期刊文献+

电力设备巡检缺陷图像智能识别技术研究 被引量:3

Research on Intelligent Image Identification Technology of Power Equipment Inspection Defects
下载PDF
导出
摘要 电力设备具有点多、面广、长期暴露野外等特点,运行过程中易受外界环境等多方面因素影响。外界环境因素包括风偏、鸟害、覆冰、雷击、山火等,其他因素还有设备老化、质量、设计、验收、运维等,单一因素或多个综合因素都可导致设备故障,进而造成大面积停电,严重影响设备运行。随着无人机电力设备巡检的应用和发展,无人机巡检数据不断的积累,通过智能化处理手段,利用无人机巡检数据的获取电力设备缺陷信息,对巡检数据中存在的规律性、潜在性、趋势性问题和隐患进行自动判断识别,对数据进行关联分析和综合应用,可以深入地判断电力设备健康状态水平,并为运维部门提供更为准确的决策依据。 Power equipment has the characteristics of many points,wide area,long-term exposure to the field,etc.,and is easily affected by many factors such as the external environment during operation.External environ-mental factors include wind deflection,bird damage,icing,lightning strikes,wildfires,etc.Other factors in-clude equipment aging,quality,design,acceptance,operation and maintenance,etc.A single factor or multiple comprehensive factors can lead to equipment failure,and then cause large-scale power outages,seriously affect-ing equipment operation.With the application and development of UAV power equipment inspection,UAV in-spection data continues to accumulate.Through intelligent processing methods,UAV inspection data is used to obtain power equipment defect information.It can automatically judge and identify the regularity,potential,trend problems and hidden dangers of the data,and conduct correlation analysis and comprehensive application of the data,which can deeply judge the health status of power equipment and provide more accurate decision making basis for the operation and maintenance department.
作者 吕强 王伟 马国强 张益明 李晖 王力 LYU Qiang;WANG Wei;MAGuo-qiang;ZHANG Yi-ming;LI Hui;WANG Li(Ultra-High Voltage Company,State Grid Gansu Electric Power Company,Lanzhou 730070,China;State Grid Gansu Electric Power Company,Lanzhou 730050,China;Tianshui Power Supply Company,State Grid Gansu Electric Power Company,Tianshui 741099,China;Lanzhou Yineng Electric Power(Group)Co.,Ltd.,Lanzhou 730071,China)
出处 《安徽师范大学学报(自然科学版)》 2022年第6期545-552,共8页 Journal of Anhui Normal University(Natural Science)
基金 甘肃电网科技项目(W22KJ2745025).
关键词 电力设备 设备故障 无人机 缺陷信息 自动判断识别 power equipment equipment failure unmanned aerial vehicle defect information automatic judg-ment and identification
  • 相关文献

参考文献5

二级参考文献107

  • 1杨启洪,秦川,刘杰荣,陈君宇,黄焯琪,孔祥轩,林刚,张朕,游金梁.基于对比歧化和深度置信网络的配电网故障类型识别[J].电网与清洁能源,2019,35(2):52-57. 被引量:19
  • 2蒋伟,王志强,吴立文.远程图像监控系统在无人值守变电站的应用[J].电力设备,2006,7(4):60-62. 被引量:10
  • 3李国杰.大数据研究的科学价值[J].中国计算机学会通讯,2012,8(9):8-15.
  • 4Lowe D G. Distinctive image features from scale-invariant keypoints[J].{H}International Journal of Computer Vision,2004,(2):91-110.
  • 5Dalal N,Triggs B. Histograms of oriented gradients for human detection[A].San Diego,CA,USA:IEEE,2005.886-893.
  • 6Ojala T,Pietikainen M,Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[A].Jerusalem,Irsael:IEEE,1994.582-585.
  • 7Matas J,Chum O,Urban M. Robust wide-baseline stereo from maximally stable extremal regions[J].{H}IMAGE AND VISION COMPUTING,2004,(10):761-767.
  • 8Hinton G E,Osindero S,Teh Y W. A fast learning algorithm for deep belief nets[J].{H}Neural Computation,2006,(7):1527-1554.
  • 9Hinton G E. Learning multiple layers of representation[J].{H}Trends in Cognitive Sciences,2007,(10):428-434.
  • 10Hinton G E,Zemel R S. Autoencoders,minimum description length,and Helmholtz free energy[A].Burlington,USA:Morgan Kaufmann,1994.3-10.

共引文献253

同被引文献10

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部