期刊文献+

具p(t)-Laplacian算子的Caputo型分数阶脉冲微分方程广义反周期边值问题解的存在性

Existence on Solutions for Generalized Anti-periodic Boundary Value Problems of Caputo Fractional Impulsive Differential Equations with p(t)-Laplacian Operator
下载PDF
导出
摘要 讨论一类具p(t)-Laplacian算子的Caputo型分数阶脉冲微分方程广义反周期边值问题,运用Krasnosel’skiis不动点定理及Banach压缩映像原理给出了解存在且唯一的充分条件,并通过实例加以验证. In this paper,a class of generalized anti-periodic boundary value problems of Caputo fractional impulsive differential equations with p(t)-Laplacian operator was discussd.By using Krasnosel’skiis fixed point theorem and Banach compression image principle to give sufficient conditions for the existence and uniqueness of the solutions,and it will be verified by an example.
作者 张婷婷 胡卫敏 ZHANG Ting-ting;HU Wei-min(School of Mathematics and Statistics,Yili Normal University,Yining 835000,China;Institute of Applied Mathematics,Yili Normal University,Yining 835000,China)
出处 《长春师范大学学报》 2022年第12期9-14,19,共7页 Journal of Changchun Normal University
基金 伊犁州科技计划项目“具p-Laplacian算子的半正分数阶脉冲微分方程边值问题”(YZ2022Y013)。
关键词 分数阶微分方程 脉冲 p(t)-Laplacian算子 广义反周期边值条件 fractional differential equations impulsive p(t)-Laplacian operator generalized anti-periodic boundary value condition
  • 相关文献

参考文献6

二级参考文献7

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部