期刊文献+

基于模式识别技术的铁路道砟模型库建立及离散元模拟 被引量:1

Establishment of Railway Ballast Model Base and DEM Simulation Based on Pattern Recognition Technology
下载PDF
导出
摘要 颗粒形状是影响铁路道砟力学特性的重要因素,考虑颗粒形状是进行真实铁路道砟力学特性数值模拟研究的首要问题。本文基于模式识别技术,开发了一种颗粒提取技术,进而能够从复杂的原始道砟图像中自动识别出道砟轮廓。该技术为道砟颗粒的形状评估奠定了基础。在对道砟颗粒进行统计形状分析的基础上,建立了道砟颗粒的几何形状库。最后,基于所提出的道砟颗粒形状库和离散元方法,对真实形状的道砟颗粒进行了双轴压缩试验,研究了道砟颗粒细长度对其力学特性的影响。 Particle shape is an important factor affecting the mechanical properties of railway ballast.Considering the particle shape is the primary problem in the numerical simulation of the mechanical properties of railway ballast.Based on pattern recognition technology,this paper developed a particle extraction technology,which can automatically identify the ballast contour from the complex original ballast image.The technology laid a foundation for the shape evaluation of ballast particles.Based on the statistical shape analysis of ballast particles,a geometric library of ballast particles was established.Finally,based on the proposed shape library of ballast particles and discrete element method,biaxial compression tests were carried out on real shaped ballast particles,and the influence of fine length of ballast particles on its mechanical properties was studied.
作者 贺勇 张宗堂 樊宝杰 柳光磊 张巨峰 HE Yong;ZHANG Zongtang;FAN BaoJie;LIU Guanglei;ZHANG Jufeng(Changsha Planning&Design Survey Research Instisute,Changsha,Hunan 410007,China;Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring,Hunan University of Science and Technology,Xiangtan,Hunan 411201,China;School of Resource&Environment and Safety Engineering,Hunan University of Science and Technology,Xiangtan Hunan 411201,China;Geological Team NO.414,Hunan Geology Mineral Exploration and Development Bureau,Yiyang,Hunan 413000,China)
出处 《公路工程》 2022年第6期188-196,共9页 Highway Engineering
基金 国家自然科学基金项目(51909087) 湖南省教育厅科学研究项目(17C0651) 湖南省研究生科研创新项目(CX20190790)。
关键词 铁路路基 模式识别 道砟 离散元 railway subgrade pattern recognition ballast discrete element method
  • 相关文献

参考文献5

二级参考文献50

  • 1陈健,周利莉,史红刚,苏大伟.一种基于Haar小波变换的彩色图像人脸检测方法[J].微计算机信息,2005,21(10S):157-159. 被引量:15
  • 2LI S Z, JAIN A K. Handbook of face recognition [ M]. New York : Springer, 2011:65-69.
  • 3YANG M H, KRIEGMAN D J, AHUJA N. Detecting faces in images: A survey [ J ] IEEE transactions on pat- tern analysis and machine intelligence, 2002, 24 ( 1 ) :34- 58.
  • 4LEVI K, WEISS Y. Learning object detection from a small number of examples:The importance of good fea- tures[ C]//Proceedings of the 2004.
  • 5IEEE Computer Soci- ety Conference on Computer Vision and Pattern Recogni- tion. Washington D C, USA : IEEE, 2004:11-53-II-60.
  • 6DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [ C ]//Proceedings of 2005 IEEEComputer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE, 2005:886-893.
  • 7TREFNY J, MATAS J. Extended set of local binary pat- terns for rapid object detection [ C ]//Proceedings of the Computer Vision Winter Workshop. Nove Hrady, Czech Republic: Czech Pattern Recognition Society, 2010:1589- 1596.
  • 8WANG X, HAN T X, YAN S. An HOG-LBP human de- tector with partial occlusion handling [ C]//Proceedings of IEEE 12th International Conference on Computer Vision. Kyoto, Japan :IEEE Computer Society, 2009:32-39.
  • 9VIOLA, PAUL, MICHAEL J JONES. Robust real-time face detection [ J]. International Journal of Computer Vi- sion, 2004(2) : 137-154.
  • 10HUANG C, AI H, LI Y, et al. High-performance rota- tion invariant multiview face detection [J]- IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2007, 29(4) :671-686.

共引文献62

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部