期刊文献+

Izydorek-Janczewska超二次非周期哈密顿系统同宿轨道解存在定理的一个新证明

A New Proof on Existence of Homoclinic Orbits for a Class of Superquadratic Aperiodic Hamiltonian Systems
下载PDF
导出
摘要 本文考虑超二次非周期哈密顿系统q+V_(q)(t,q)=f(t),t∈R(HS)同宿轨道解的存在性,其中V(t,q)=-K(t,q)+W(t,q)关于变量t是T-周期的,且满足条件(V_(1))-(V_(7)),f∈L^(∞)(R,R^(n))∩L^(2)(R,R^(n)),虽然相应的能量泛函φ不满足(PS)条件,但可利用Brezis-Nirenberg型的山路定理得到φ的一个(PSC)c*序列{q_(m)},进而可证明{q_(m)}弱收敛到(HS)的一个非平凡同宿轨道解。 In this paper, we consider the existence of homoclinic orbits for the nonperiodic superquadratic Hamiltonian system q+V_(q)(t,q)=f(t),t∈R(HS) where V(t,q)=-K(t,q)+W(t,q) is T-periodic in t,and satisfies the condition(V_(1))-(V_(7)),f∈L^(∞)(R,R^(n))∩L^(2)(R,R^(n)).Although the corresponding energy functional φ does not satisfy the(PS)condition, a (PSC)c* sequence{q_(m}can be obtained by Brezis-Nirenberg type mountain pass theorem, and then we can prove that {q_(m)} weakly converges to a nontrivial homoclinic orbit of(HS).
作者 张艳萍 李成岳 李颖 ZHANG Yanping;LI Chengyue;LI Ying(College of Science,Minzu University of China,,Beijing 100081,China)
出处 《中央民族大学学报(自然科学版)》 2022年第4期61-65,共5页 Journal of Minzu University of China(Natural Sciences Edition)
基金 国家自然科学基金(1187145)。
关键词 哈密顿系统 山路定理 临界点 同宿轨道解 (PSC)c*序列 Hamiltonian system mountain pass theorem critical point Homoclinic orbits (PSC)c*sequence
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部