摘要
在现实世界的节点分类场景中,只有少部分节点带标签且类标签是不平衡的.然而,大部分已有的方法未同时考虑监督信息缺乏与节点类不平衡这两个问题,不能保证节点分类性能的提升.为此,文中提出基于自监督学习的不平衡节点分类算法.首先,通过图数据增强生成原图的不同视图.然后,利用自监督学习最大化不同视图间节点表示的一致性以学习节点表示.该算法通过自监督学习扩充监督信息,增强节点的表达能力.此外,在交叉熵损失和自监督对比损失的基础上,设计语义约束损失,保持图数据增强中语义的一致性.在三个真实图数据集上的实验表明,文中算法在解决不平衡节点分类问题上具有较优的性能.
In real-world node classification scenarios,only a few nodes are labeled and their class labels are imbalanced.In most of the existing methods,the lack of the supervision information and the imbalance of node classes are not taken into account at the same time,and the improvement of node classification performance cannot be guaranteed.Therefore,an imbalanced node classification algorithm based on self-supervised learning is proposed.Firstly,different views of the original graph are generated through graph data augmentation.Then,node representations are learned by maximizing the consistency of node representations across views using self-supervised learning.The supervised information is expanded and the expressive ability of nodes is enhanced by self-supervised learning.In addition,a semantic constraint loss is designed to ensure semantic consistency in graph data augmentation along with cross-entropy loss and self-supervised contrastive loss.Experimental results on three real graph datasets show that the proposed algorithm achieves better performance on solving the imbalanced node classification problem.
作者
崔彩霞
王杰
庞天杰
梁吉业
CUI Caixia;WANG Jie;PANG Tianjie;LIANG Jiye(School of Computer and Information Technology,Shanxi University,Taiyuan 030006;College of Computer Science and Technology,Taiyuan Normal University,Jinzhong 030619;College of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024)
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2022年第11期955-964,共10页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金项目(No.61976184,62272285)资助。
关键词
自监督学习
不平衡节点分类
图神经网络
数据增强
语义约束损失
Self-Supervised Learning
Imbalanced Node Classification
Graph Neural Network
Data Augmentation
Semantic Constraint Loss