期刊文献+

碳化镍薄膜的制备及其作为石墨烯制备中间相的研究进展 被引量:1

Research Progress on the Preparation of Nickel Carbide Films and Nickel Carbide as Intermediate Phases of Preparation of Graphene
下载PDF
导出
摘要 碳化镍薄膜具有良好的催化活性、低电阻率、高的硬度以及可以作为石墨烯制备过程中的理想中间体等特点引起了人们的广泛关注。物理气相沉积技术制备的碳化镍薄膜多是微晶相嵌入碳基体中的复合结构薄膜,然而,通过化学气相沉积技术制备的薄膜是均匀相薄膜,电阻率低、电催化活性较好。此外,在高质量石墨烯的制备方面,碳化镍相起到提供碳源作用。本文从物理溅射技术、化学气相沉积技术和原子层沉积技术综述了碳化镍薄膜的制备方法,并且总结了碳化镍中间相对石墨烯形成的影响。 Nickel carbide films have attracted extensive attention due to their unique properties, such as good catalytic activity, low resistivity, and high hardness. Moreover nickel carbide can be an ideal intermediate for graphene preparation. Nickel carbide films prepared by physical vapor deposition technology are mostly composite structure films with nanocrystals embedded in a carbon matrix. However, the films deposited by the chemical vapor deposition technique are homogeneous structures with low resistivity and good electrocatalytic activity. In addition,nickel carbides play an important role in the formation of high-quality graphene since they can be used as the carbon source. In this paper, the preparation methods of nickel carbides are reviewed, including physical sputtering,chemical vapor deposition and atomic layer deposition technology. The effect of the nickel carbide intermediate phase on the formation of graphene has also been summarized.
作者 陈森 杨斗豪 任家轩 王正铎 刘博文 刘忠伟 CHEN Sen;YANG Douhao;REN Jiaxuan;WANG Zhengduo;LIU Bowen;LIU Zhongwei(Laboratory of Plasma Physics and Materials,Beijing Institute of Graphic Communication,Beijing 102600,China)
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2022年第11期791-802,共12页 Chinese Journal of Vacuum Science and Technology
基金 国家自然科学基金项目(12075032) 北京市自然科学基金项目(KZ2020101522) 云南省刑事科学技术重点实验室开放课题(YNPC-S2021002) 北京印刷学院项目(EC202001,EE202001,EA201901,EC202207)。
关键词 碳化镍 石墨烯 原子层沉积 磁控溅射 Nickel carbide Graphene Atomic layer deposition Magnetron sputtering
  • 相关文献

参考文献1

二级参考文献38

  • 1Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666-669.
  • 2Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183-191.
  • 3Edwards RS, Coleman KS (2012) Graphene film growth on polycrystalline metals. Acc Chem Res 46:23-30.
  • 4Patera LL, Africh C, Weatherup RS et al (2013) In situ obser- vations of the atomistic mechanisms of Ni catalyzed low tem- perature graphene growth. ACS Nano 7:7901-7912.
  • 5Li X, Cai W, Colombo Let al (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268-4272.
  • 6Baraton L, He Z, Lee C et al (2011) On the mechanisms of precipitation of graphene on nickel thin films. EPL Europhys Lett 96:46003.
  • 7Shelton JC, Patil HR, Blakely JM (1974) Equilibrium segregation of carbon to a Nickel(111) surface-surface phase-transition. Surf Sci 43:493-520.
  • 8Lahiri J, Miller TS, Ross AJ et al (2011) Graphene growth and stability at nickel surfaces. New J Phys 13:025001.
  • 9Yu Q, Lian J, Siriponglert Set al (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93:113103.
  • 10Zhang Y, Gomez L, Ishikawa FN et al (2010) Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J Phys Chem Lett 1:3101-3107.

共引文献3

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部