期刊文献+

超声影像组学对BI-RADS 4a类不规则乳腺结节良恶性的鉴别价值 被引量:8

Value of ultrasound-based radiomics in identifying benign and malignant BI-RADS category 4a irregular breast lesions and reducing unnecessary biopsies
下载PDF
导出
摘要 目的探讨超声影像组学对BI-RADS 4a类不规则乳腺结节良恶性的鉴别价值,并结合影像组学、超声特征及临床独立危险因素特征建立列线图,评估其在减少不必要活检中的价值。方法回顾性收集常规超声检查筛选出的BI-RADS 4a类不规则乳腺结节905例,随机分为训练队列(n=634)和验证队列(n=271),比例为7∶3。共收集851个影像组学特征,以手术病理结果为金标准,通过Logistic回归模型构建影像组学模型,同时利用单因素逻辑分析及多因素逻辑分析结合影像组学特征、超声特征及临床独立危险因素建立影像组学模型,通过ROC曲线评估影像组学模型及列线图模型对超声BI-RADS 4a类形态不规则乳腺结节的诊断效能。结果905例不规则乳腺结节中,恶性结节485个,良性结节420个;患者年龄22~83(50.05±11.13)岁,训练队列及验证队列的年龄、Rad-score值、肿块直径等结果差异无统计学意义(P>0.05);训练队列影像组学模型AUC值为0.927(95%CI:0.900~0.950),验证队列影像组学模型AUC值为0.946(95%CI:0.908~0.976),该模型训练队列的敏感度、准确度、特异性、F1值、精确度分别为0.879、0.879、0.877、0.909、0.940,该模型验证队列的敏感度、准确度、特异性、F1值、精确度分别为0.890、0.896、0.909、0.921、0.956;校准曲线显示该模型训练队列和验证队列有较好的校准度;训练队列列线图模型AUC值为0.943(95%CI:0.912~0.960),验证队列列线图模型AUC值为0.968(95%CI:0.924~0.970)。结论超声影像组学及列线图模型在提高BI-RADS 4a类形态不规则乳腺结节良恶性的诊断效能有重要价值,对BI-RADS 4a类不规则乳腺结节有更好的预测效能,并且能够减少不必要的活检。 Objective To investigate the value of ultrasound-based radiomics in discriminating benign and malignant BI-RADS category 4a irregular breast nodules,and to assess its value in reducing unnecessary biopsies by establishing a nomogram through combine radiomics,ultrasound features and clinical independent risk factor characteristics.Methods A total of 905cases of BI-RADS 4a irregular breast nodules screened by conventional ultrasonography were retrospectively collected and randomly divided into a training set(n=634)and a validation set(n=271)with a ratio of 7:3.Pyradiomics was used to extract851 features.The radiomics model was constructed by Logistics regression model using surgical pathology as the gold standard.The diagnostic efficacy of the radiomics model and the nomogram model on the diagnosis of irregular breast nodules with ultrasound BI-RADS 4a pattern was evaluated by ROC curve.Results Among 905 irregular breast nodules,485were malignant nodules and 420 were benign nodules,with the age of 22-83(50.05±11.13)years old.The age,Rad-score value,and mass diameter of the two groups were not significantly different(P>0.05).The AUC value of the training cohort radiomics model was 0.927(95%CI:0.900-0.950),and the AUC value of the validation cohort radiomics model was 0.946(95%CI:0.908-0.976).The sensitivity,accuracy,specificity,F1 value,and precision for the training cohort of this model were 0.879,0.879,0.877,0.909 and 0.940,respectively.The sensitivity,accuracy,specificity,F1 value,and precision for the validation cohort of this model were 0.890,0.896,0.909,0.921 and 0.956,respectively.The calibration curves showed good calibration between the training and validation cohorts of this mode;The AUC value was 0.943(95%CI:0.912-0.960)for the training cohort normogram model and 0.968(95%CI:0.924-0.970)for the validation cohort normogram model.Conclusion Ultrasound-based radiomics and the nomogram model have important value in improving the diagnostic efficacy of benign and malignant BIRADS 4a morphologically irregular breast nodules,have better predictive efficacy for BI-RADS 4a irregular breast nodules,and can reduce unnecessary biopsies.
作者 米拉·也尔兰 张海见 胡峙珩 冷晓玲 MILA·Yeerlan;ZHANG Haijian;HU Zhiheng;LENG Xiaoling(Department of Ultrasound Diagnosis,Affiliated Cancer Hospital of Xinjiang Medical University,Urumqi 830000,China)
出处 《分子影像学杂志》 2023年第1期12-20,共9页 Journal of Molecular Imaging
基金 新疆维吾尔自治区科技援疆项目(2020E0269)。
关键词 超声检查 影像组学 乳腺肿瘤 预测 活检 ultrasonography radiomics breast tumor forecasting biopsy
  • 相关文献

参考文献13

二级参考文献66

  • 1周世崇,常才,陈敏,曾炜,范亦武.实时三维超声鉴别乳腺良恶性肿块的价值[J].中华超声影像学杂志,2006,15(12):906-909. 被引量:50
  • 2全国肿瘤防治研究办公室.中国恶性肿瘤死亡调查研究(1990-1992)[M].北京:人民卫生出版社,2008.82-101.
  • 3Torre LA,Bray F,Siegel RL,et al.Global cancer statistics,2012[J].CA Cancer J Clin,2015,65(2):87-108.
  • 4De Santis C,Ma J,Bryan L,et al.Breast cancer statistics,2013[J].CA Cancer J Clin,2014,64(1):52-62.
  • 5De Santis C,Siegel R,Bandi P,et al.Breast cancer statistics,2011[J].CA Cancer J Clin,2011,61(6):409-418.
  • 6Mettlin C.Global breast cancer mortality statistics[J].CA Cancer J Clin,1999,49(3):138-144.
  • 7Zeng H,Zheng R,Guo Y,et al.Cancer survival in China,2003-2005:a population-based study[J].Int J Cancer,2015,136(8):1921-1930.
  • 8Zeng H,Zheng R,Zhang S,et al.Female breast cancer statistics of 2010 in China:estimates based on data from 145 populationbased cancer registries[J].J Thorac Dis,2014,6(5):466-470.
  • 9Allemani C,Sant M,Weir HK,et al.Breast cancer survival in the US and Europe:a CONCORD high-resolution study[J].Int J Cancer,2013,132(5):1170-1181.
  • 10Walters S,Maringe C,Butler J,et al.Breast cancer survival and stage at diagnosis in Australia,Canada,Denmark,Norway,Sweden and the UK,2000-2007:a population-based study[J].Br J Cancer,2013,108(5):1195-1208.

共引文献1073

同被引文献82

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部