期刊文献+

Beaver三元组主动性生成协议研究 被引量:1

Research on Proactive Generation Protocol of Beaver Triples
下载PDF
导出
摘要 在安全多方计算中,Beaver三元组是实现加法和乘法有效安全计算的基本技术之一,其可以将协议轮数降低至参与方个数的多项式大小。文章对移动敌手模型下Beaver三元组的安全生成协议开展研究,提出抵御半诚实移动敌手攻击的安全协议。首先,文章利用Paillier公钥系统设计了计算安全的有效两方主动性Beaver三元组生成协议,协议轮数为分享片段更新次数的2倍,每轮通信复杂度为3个Paillier密文;然后利用Shamir秘密分享等初等密码工具设计出信息论安全的有效n方Beaver三元组主动性生成协议,其中n≥3,协议发送元素总数至多为6nκ+6n个,执行轮数不多于2κ+2,其中κ为分享片段更新次数,且敌手控制参与方数不超过n-2。最后,针对恶意敌手文章给出协议设计思路。 In secure multi-party computation, Beaver triples have been one of basic technique to realize the secure computation of addition and multiplication under secret sharing, which can make the number of protocol rounds reach the polynomial of the number of participating parties.This paper studied secure generation protocol of Beaver triples in the mobile adversary model.First, a computational security, effective two-party active Beaver triple generation protocol was designed based on Paillier public key cryptosystem, whose number of rounds was twice the number of renew operations and sent three ciphertexts of Paillier cryptosystem in each round.Then the effective n-party Beaver triplet initiative generation protocol for information theory security was designed using primary cryptographic tools such as Shamir secret sharing, where n ≥ 3, the total number of elements sent by the protocol was at most 6nκ+6n, and the number of execution rounds is not more than 2κ+2, where к was the number of sharing fragment updates and the number of adversary control participants does not exceed n-2. Finally, protocol design ideas were given for malicious adversary articles.
作者 吕克伟 陈驰 LYU Kewei;CHEN Chi(State Key Laboratory of Information Security,Institute of Information Engineering,CAS,Beijing 100093,China;School of Cyber Security,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《信息网络安全》 CSCD 北大核心 2022年第12期16-24,共9页 Netinfo Security
基金 国家重点研发计划[2017YFB0802500] “十三五”国家密码发展基金[MMJJ20180208]。
关键词 安全的多方计算 Beaver三元组 Shamir秘密分享 移动敌手 主动性秘密分享 secure multi-party computation Beaver triples Shamir secret sharing mobile adversary proactive secret sharing
  • 相关文献

参考文献2

二级参考文献18

  • 1Blum M, Micali S. How to generate cryptographically strong sequences of pseudo-random bits. SIAM J Comput, 1984, 13:850-864.
  • 2Alexi W, Chor B, Goldreich O, et al. RSA and rabin functions: certain parts are as hard as the whole. SIAM J Comput, 1988, 17:194-209.
  • 3Goldreich O, Levin L. A hard-core predicate for all one-way functions. In: Johnson D S, ed. Proceedings of the 21st ACM Symposium on Theory of Computing. New York: ACM, 1989. 25-32.
  • 4Yao A C. Theory and applications of trapdoor functions. In: Pippenger N, ed. Proceedings of 23rd IEEE Symposium on Fundations of Computer Science. Washington D C: IEEE Computer Society, 1982. 80-91.
  • 5Long D L, Wigderson A. The discrete log hides O(logn) bits. SIAM J Comput, 1988, 17:363-372.
  • 6Peralta R. Simultaneous security of bits in the discrete log. In: Proceedings of Advances in Cryptography - Eurocrypt'85. LNCS, Vol 219. Berlin: Springer-Verlag, 1986. 66-72.
  • 7Goldreich O, Rosen V. On the security of modular exponentiation with application to the construction of pseudorandom generators. J Cryptol, 2003, 16:71-93.
  • 8H~stad J, Schrift A W, Shamir A. The discrete logarithm modulo a composite Hides O(n) bits. J Comput Syst Sci, 1993, 47:376-404.
  • 9Paillier P. Public-key cryptosystems based on composite degree residuosity class. In: Proceedings of Advances in Cryptography - Eurocrypt'99. LNCS, Vol 1592. Berlin: Springer-Verlag, 1999. 223-238.
  • 10Catalano D, Gennaro R, Itowgrave G N. Paillier's trapdoor function hides up to O(n) bits. J Cryptol, 2002, 15:251 269.

共引文献2

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部