期刊文献+

深度强化学习及智能路径规划应用综述 被引量:1

Review of Deep Reinforcement Learning and Its Application in Intelligent Path Planning Algorithms
下载PDF
导出
摘要 强化学习是人工智能的重要分支,具备与环境直接交互学习能力并具有优化决策的特点。强化学习问世以来便受到科研学者广泛关注,并探索其与深度学习之间融合的可能性。强化学习应用广泛,渗透教育、医药卫生、制造业、金融等多个领域。通过总结值函数与策略更新两种深度强化学习算法的演变历程,分别探索强化学习在智能路径规划领域中的优化算法,探讨算法落地过程中的难点及发展方向。 Reinforcement learning is an important branch of artificial intelligence,which has the ability to directly interact with the environment to learn and optimize decision-making.Since its inception,reinforcement learning has been widely concerned by researchers and explored the possibility of integration with deep learning.Reinforcement learning has a wide range of applica⁃tions,infiltrating many fields such as education,medicine and health,manufacturing,and finance.By summarizing the evolution of the two deep reinforcement learning algorithms,value function and policy update,the optimization algorithms of reinforcement learning in the field of intelligent path planning are explored respectively,and the difficulties and development directions in the process of algorithm implementation are discussed.
作者 程浩鹏 朱涵 杨高奇 晏为民 王慧婷 Cheng Haopeng;Zhu Han;Yang Gaoqi;Yan Weimin;Wang Huiting(School of Computer Science,Civil Aviation Flight University of China,Guanghan 618300;School of Science,Civil Aviation Flight University of China,Guanghan 618300)
出处 《现代计算机》 2022年第21期1-10,共10页 Modern Computer
基金 中国民用航空飞行学院学生科研基金(XSB2022-069)。
关键词 强化学习 路径规划 深度神经网络 reinforcement learning path planning deep neural network
  • 相关文献

参考文献8

二级参考文献46

  • 1高晓光,符小卫,宋绍梅.多UCAV航迹规划研究[J].系统工程理论与实践,2004,24(5):140-143. 被引量:25
  • 2段俊花,李孝安.基于改进遗传算法的机器人路径规划[J].微电子学与计算机,2005,22(1):70-72. 被引量:26
  • 3蒋新松.未来机器人技术发展方向的探讨[J].机器人,1996,18(5):285-291. 被引量:45
  • 4王越超.多机器人协作系统研究:博士论文[M].哈尔滨工业大学,1999..
  • 5MANYIKA J, CHUI M, BUGHIN J, et al. Disruptive technologies: Advances that will transform life, business, and the global economy[M]. San Francisco, CA, USA: McKinsey Global Institute, 2013.
  • 6CHRISTENSEN H, BATZINGER T, BEKRIS K, et al. A roadmap for U.S. robotics- from internet to robotics[R]. USA: Computing Community Consortium and Computing Research Assoc., 2009.
  • 7BARACK H O. Advanced manufacturing partnership (AMP)[R]. Washington: US Presidential Science and Technology Advisory Committee, 2011.
  • 8BARACK H O. National robotics initiative (NRI)[R]. Washington: US National Science Foundation, 2011.
  • 9CUI Zhongqing. Robot future strategy 2022[R]. Seoul.- South Korean Ministry of Knowledge Economy, 2012.
  • 10Industry 4.0 Working Group. Securing the future of German manufacturing industry recommendations for implementing the strategic initiative INDUSTRY 4.0[R]. Berlin: German Federal Ministry for Education, 2013.

共引文献634

同被引文献50

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部