期刊文献+

基于深度自编码器的辐射源个体开集识别 被引量:6

Open set recognition of specific emitter identification based on deep auto-encoder
下载PDF
导出
摘要 为实现对城市用频设备的精确管控,针对特定辐射源开集识别问题,构建了一套基于深度学习的辐射源个体开集识别处理流程,核心在于指纹特征有效区间筛选与基于深度自编码器的开集识别模型。一方面,通过使用Grad-CAM实现对深度网络激活可视化,筛选出信号对网络激活贡献较高的部分,在不损失过多指纹信息的情况下进行信号区间筛选;另一方面,建立基于半监督对抗自编码器的辐射源个体开集识别模型,实现对电磁环境中出现的未知辐射源个体的有效识别。实验表明此开集识别模型能够在不损失闭集识别率的条件下实现高精确度的开集识别。 A processing process of open-set specific emitter identification is built in order to achieve accurate control of urban frequency equipment.The core lies in the effective interval filtering of fingerprint features and the open set recognition model based on the deep self-encoder.By visualizing deep network activation using Class Activation Mapping(Grad-CAM),the section of signal contributing more to neural network activation can be determined,and then interval filtering for the signal can be performed without losing too much fingerprint information.On the other hand,an open-set specific emitter identification model is established based on semi-supervised adversarial autoencoders,achieving effective monitoring and identification of unknown emitters that may occur in the spectrum.Experiments show that Grad-CAM can filter out the most advantageous part of the extracted signal fingerprint,and the proposed model can achieve high-precision open set recognition without degrading the closed set recognition rate.
作者 林子榆 王翔 孙丽婷 柯达 柳征 LIN Ziyu;WANG Xiang;SUN Liting;KE Da;LIU Zheng(College of Electronic Science and Technology,National University of Defense Technology,Changsha Hunan 410073,China)
出处 《太赫兹科学与电子信息学报》 2022年第12期1285-1291,共7页 Journal of Terahertz Science and Electronic Information Technology
基金 湖南省创新群体研究资助项目(2019JJ10004)。
关键词 辐射源识别 开集识别 深度学习 自编码器 Grad-CAM算法 specific emitter identification open set recognition deep learning deep selfencoder Grad-CAM
  • 相关文献

参考文献4

二级参考文献73

  • 1Freund Y, Iyer R, Schapire R E, et al. An Efficient Boosting Al-gorithm for Combining Preferences//Proc of the International Con-ference on Machine Learning. Madison, USA, 1998:170-178.
  • 2Herschtal A, Raskutti B. Optimizing Area under the ROC Curve Using Gradient Descent//Proc of the 21 st International Conference on Machine Learning. Banff, Canada, 2004:49-56.
  • 3Rakotomamonjy A. Optimizing AUC with Support Vector Machine (SVM) // Proc of the European Conference on Artificial Intelli-gence Workshop on ROC Analysis and Artificial Intelligence. Valen-cia, Spain, 2004:71-80.
  • 4Rakotomamonjy A. Quadratic Programming fur AUC Optimization // Proc of the 2nd International Conference on Modelling, Computa-tion and Optimization in Information Systems and Management Sci-ences. Metz, France, 2004:603-610.
  • 5Fawcett T. An Introduction to ROC Analysis. Pattern Recognition Letters, 2006, 27(8) : 861-874.
  • 6Rosset S. Model Selection via the AUC//Proc of the 21st Interna-tional Conference on Machine Learning. Banff, Canada, 2004:89-97.
  • 7Wu S, Flach P. A Scored AUC Metric for Classifier Evaluation and Selection// Proc of the ICML Workshop on ROC Analysis in Ma-chine Learning. Bonn, Germany, 2005 : 247-262.
  • 8Hand D J, Till R J. A Simple Generalization of the Area under the ROC Curve for Multiple-Class Classification Problems. Machine Learning, 2001, 45(2): 171-186.
  • 9Calders T, Jaroszewicz S. Efficient AUC Optimization for Classifi-cation//Proc of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases. Warsaw, Poland, 2007:42-53.
  • 10Burges C, Shaked T, Renshaw E, et al. Learning to Rank Using Gradient Descent//Proc of the 22nd International Conference on Machine Learning. Bonn, Germany, 2005:89-96.

共引文献99

同被引文献51

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部