摘要
射频指纹是设备硬件的固有特征,与发射信号本身无关,因此常用于通信抗欺骗中。本文基于射频指纹的原理,采用神经网络对接收机所获得的原始信号样本进行处理,包括I/Q序列、幅度/相位、星座图的二值图和星座图的颜色密度图4种信号表现形式,达到抗欺骗效果。在信干噪比为-30~30 dB的情况下,信号的识别准确率最高可达99.93%。相较于现有文献,本文所提的基于深度学习的方法可适应不同信干噪比的通信场景,在欺骗信号与合法信号同时存在的复杂通信环境下实现抗欺骗。
The radio frequency fingerprints are inherent features of the device hardware,and will not change with the transmitted signal,therefore they are often used in communication anti-spoofing.In this paper,the neural network is adopted to process the original signal samples obtained by the receiver,including I/Q sequence,amplitude/phase,binary image of constellation diagram and color density diagram of constellation diagram to achieve anti-deception effect.When the signal-to-interference and noise ratio is in the range of-30 dB to 30 dB,the signal recognition accuracy can reach up to 99.93%.Being different from the existing literature,the method can be adapted to the scenes with different signalto-interference and noise ratios.This research shows that the proposed method is feasible to achieve anti-spoofing in a complex communication environment where spoofing signals and legal signals coexist.
作者
张雅琪
杨春
刘友江
杨大龙
秋勇涛
ZHANG Yaqi;YANG Chun;LIU Youjiang;YANG Dalong;QIU Yongtao(Institute of Electronic Engineering,China Academy of Engineering Physics,Mianyang Sichuan 621999,China)
出处
《太赫兹科学与电子信息学报》
2022年第12期1305-1310,共6页
Journal of Terahertz Science and Electronic Information Technology
基金
中国工程物理研究院院长基金资助项目(YZJJLX2017006)。
关键词
抗欺骗
射频指纹
卷积神经网络
星座图
颜色密度图
anti-spoofing
RF fingerprint
Convolutional Neural Network
constellation figure
color density figure