摘要
在高频金融数据分析中,高维波动率矩阵的估计和预测十分具有挑战性,当金融资产存在自然的分组结构时,此问题尤为突出.为此,本文提出一种新的GARCH-Ito分组因子模型,将对数价格序列表示为共同因子、分组因子以及异质项,并通过将离散的广义自回归条件异方差(generalized autoregressive conditional heteroskedasticity,GARCH)结构嵌入特征值过程的波动率中,实现刻画数据波动率动态的目的.本文利用伪极大似然法得到模型的参数估计,建立极限理论,模拟研究表明其良好的有限样本性质.在实证研究中,利用上海证券交易所主板及深圳证券交易所创业板的股票高频价格数据,对比了不分组的模型及波动率矩阵的非参数多尺度已实现波动率(multi-scale realized volatility,MSRV)估计,对比结果显示本文模型具有更好的波动率预测效果.
In the research area of the high-frequency financial data analysis,estimation and prediction of the high-dimensional volatility matrix are challenging problems,especially when the assets of interest have a naturally given group structure.In order to address this issue,we propose a novel GARCH-Ito grouped factor model,in which we present the log price series of grouped assets with common factors,group-specific factors,and an assetspecific error term.We then embed the discrete GARCH structure into the volatility of the eigenvalue processes to capture the volatility dynamics of the observed price data.We propose a quasi maximum likelihood method for parameter estimation,establish its asymptotic properties and illustrate its good finite-sample performance with simulation.In real data analysis,we compare our method with the ungrouped factor model and the nonparametric high-frequency volatility estimator MSRV using the data from the SSE Main Board and the SZSE Chi Next market,where the proposed method outperforms its competitors in terms of prediction of the volatility matrix.
作者
高维清
吴奔
张波
Weiqing Gao;Ben Wu;Bo Zhang
出处
《中国科学:数学》
CSCD
北大核心
2022年第11期1333-1360,共28页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:71873137和71471173)
中国人民大学科学研究基金(中央高校基本科研业务费专项资金资助)(批准号:21XNLG08)资助项目。
关键词
高维波动率矩阵
高频数据
混频模型
分组因子模型
high-dimensional volatility matrix
high-frequency data
mixed-frequency model
grouped factor model