期刊文献+

基于不确定事件威胁度评估的UUV任务重规划

UUV mission re-planning based on threat assessment of uncertain events
下载PDF
导出
摘要 无人水下航行器(UUV)的任务规划直接关系到水下作业的效率。由于水下环境复杂,不确定事件频发,有时UUV按照最初的规划很难完成任务。针对UUV任务规划问题,提出基于不确定事件威胁度评估的UUV任务重规划策略。首先,UUV根据任务点的分布进行初始任务规划,采用自组织网络算法为UUV规划访问多任务点的时间顺序及访问任务点的最短路径。其次,判断UUV执行任务过程中出现的不确定事件类型,并转换为贝叶斯网络的形式。最后,利用贝叶斯网络对不确定事件的威胁度进行评估。如果威胁度大于阈值,则UUV进行任务重规划;否则,UUV按照初始规划继续执行任务。在多种不确定事件场景中进行任务规划仿真,结果显示所提的算法能够保证UUV作业的安全,且提高了任务的完成率。 The mission planning of unmanned underwater vehicles(UUV)is directly related to the efficiency of underwater operations.Due to the complex underwater environment and frequent uncertain events,it is sometimes difficult for UUV to complete the mission according to the initial plan.Aiming at the problem of the UUV mission planning,a mission re-planning strategy based on the threat assessment of uncertain events was proposed.Firstly,the UUV performed initial mission planning according to the distribution of mission points.The self-organizing map algorithm was used to plan the time sequence of accessing multi-mission points and the shortest path for the UUV to visit the mission points.Then,the types of uncertain events were determined in the process of executing missions by the UUV and converted into the form of a Bayesian network.Finally,the Bayesian network was used to evaluate the threat degree of uncertain events.If the threat degree was greater than the threshold,the UUV performed mission re-planning.Otherwise,the UUV continued to perform the mission according to the initial plan.The simulation results of mission planning in a variety of uncertain event scenarios showed that the proposed algorithm could ensure the safety of UUV operations and improve the mission completion rate.
作者 曹翔 孙长银 CAO Xiang;SUN Changyin(School of Artificial Intelligence,Anhui University,Hefei 230601,China;School of Automation,Southeast University,Nanjing 210096,China)
出处 《智能科学与技术学报》 2022年第4期491-502,共12页 Chinese Journal of Intelligent Science and Technology
基金 国家自然科学基金资助项目(No.61773177,No.61921004,No.U1713209) 安徽省高校协同创新资助项目(No.GXXT-2021-010) 江苏省自然科学基金资助项目(No.BK20171270)。
关键词 不确定事件 威胁度评估 UUV 任务重规划 贝叶斯网络 uncertain events threat assessment UUV mission re-planning Bayesian network
  • 相关文献

参考文献5

二级参考文献77

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部