期刊文献+

面向海洋环境自适应采样的多AUV协同定位 被引量:2

Multi-AUV cooperative localization in adaptive sampling for marine environmental monitoring
下载PDF
导出
摘要 高效、准确的水质监测对海洋资源开发具有重要意义,自治式潜水器(AUV)在海洋环境监测中有广阔的应用前景。针对单个AUV执行面向海洋标量场估计的水质采样任务时存在的效率低、可靠性差、覆盖率不足和定位准确性差等问题,提出了一种基于多AUV的协同定位与自适应采样系统。系统中每个AUV定期向队友广播自己收集到的采样数据,并根据接收到的队友数据,基于扩展卡尔曼滤波器进行自定位矫正。根据收集到的采样数据,AUV以高斯过程建模环境标量场,使用差分进化路径规划器在线规划后续采样路径。仿真结果表明,所提方案有效降低了多AUV系统的定位误差,提升了对环境标量场的估计精度。 Efficient and accurate water quality monitoring is of great significance to the development of marine resources,and autonomous underwater vehicle(AUV)has broad application prospects in marine environmental monitoring.There are problems such as low efficiency,poor reliability,insufficient coverage and poor positioning accuracy when a single AUV performs water quality sampling tasks for ocean scalar field estimation.The multi-AUV-based cooperative localization and adaptive sampling system was proposed.Each AUV in the system broadcasted the collected sampling data to its teammates,and based on the data received,it corrected the location of itself based on the extended Kalman filter.With the collected sampling data,the AUV modeled the environmental scalar field with a Gaussian process and used a differential evolution path planner to plan its subsequent sampling path online.Simulation results showed that the proposed method effectively reduced the positioning error of AUVs,and improved the estimation accuracy of the environmental scalar field.
作者 张佳欣 张森林 刘妹琴 董山玲 郑荣濠 ZHANG Jiaxin;ZHANG Senlin;LIU Meiqin;DONG Shanling;ZHENG Ronghao(College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China;State Key Laboratory of Industrial Control Technology,Zhejiang University,Hangzhou 310027,China;Institute of Artificial Intelligence and Robotics,Xi’an Jiaotong University,Xi’an 710049,China)
出处 《智能科学与技术学报》 2022年第4期503-512,共10页 Chinese Journal of Intelligent Science and Technology
基金 NSFC-浙江两化融合联合基金资助(No.U1809212,No.U1909206) 浙江省属基本科研业务费专项资金资助(No.2021XZZX014)。
关键词 自治式潜水器 协同定位 高斯过程 自适应采样 路径规划 autonomous underwater vehicle cooperative localization Gaussian process adaptive sampling path planning
  • 相关文献

同被引文献35

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部