期刊文献+

一种六自由度仿生机器海豚

A Six-degree-of-freedom Bionic Robot Dolphin
下载PDF
导出
摘要 为提升机动性与灵活度,设计一种具有图像传输功能的六自由度仿生机器海豚。对机器海豚的刚性头部、偏航腰部和两关节俯仰尾部的四关节系统进行设计;采用Arduino Uno3单片机输出PWM信号控制7路舵机,制定电气系统控制方案和防水密封方案,利用PS2手柄遥控机器海豚,通过尾部两关节上下摆动实现推进,腰部偏航关节实现转弯,舵机驱动配重块和一对单自由度的胸鳍实现俯仰姿态调节,通过实验验证方案的可行性。结果表明,该设计能实现机器海豚加减速前进、偏航、俯仰、原地转弯和双胸鳍拍水的运动姿态。 In order to improve the mobility and flexibility, a six-degree-of-freedom bionic robot dolphin with image transmission function is designed. A 4-joint system consisting of a rigid head, a yawing waist and a 2-joint pitching tail of the robot dolphin is designed. Arduino Uno3 MCU is used to output PWM signals to control 7 steering engines, the electrical system control scheme and waterproof sealing scheme are formulated, PS2 handle is used to remotely control the robot dolphin, the tail joint swings up and down to achieve propulsion, the waist yaw joint turns, and the steering engine drives the counterweight block and a pair of single-degree-of-freedom pectoral fins to achieve pitch attitude adjustment.The feasibility of the scheme is verified by experiments. The results show that the robot dolphin achieves the motion postures of acceleration and deceleration, yaw, pitch, turning in place and double pectoral fins beating water.
作者 谭祖玮 张骋浩 孙卓慧 高南 贾永霞 谢广明 Tan Zuwei;Zhang Chenghao;Sun Zhuohui;Gao Nan;Jia Yongxia;Xie Guangming(School of Aerospace Engineering,Tsinghua University,Beijing 100084,China;National Experimental Teaching Demonstration Center of Mechanics,Tsinghua University,Beijing 100084,China;College of Engineering,Peking University,Beijing 100871,China)
出处 《兵工自动化》 2022年第12期25-29,共5页 Ordnance Industry Automation
基金 清华大学本科教学改革项目(ZY01_02)。
关键词 机器海豚 仿生 背腹式推进 偏航 俯仰 robot dolphin bionics dorso-ventral propulsion yaw pitch
  • 相关文献

参考文献5

二级参考文献51

  • 1沈飞,曹志强,徐德,周超.基于尾鳍攻角的机器海豚推进控制研究[J].华中科技大学学报(自然科学版),2011,39(S2):302-305. 被引量:2
  • 2陈裕隆,陈加林,何容飞,吴玉萍.中华白海豚保护与研究进展[J].海洋环境科学,2004,23(3):65-70. 被引量:15
  • 3王龙,喻俊志,胡永辉,范瑞峰,霍继延,谢广明.机器海豚的机构设计与运动控制[J].北京大学学报(自然科学版),2006,42(3):294-301. 被引量:13
  • 4Bandyopadhyay P R. Trends in Biorobotic Autonomous Undersea Vehicles. IEEE J Oceanic Eng, 2005, 30 ( 1 ) :109-139
  • 5Lang T G, Wu T Y, Brokaw C J, et al. Speed, Power, and Drag Measurements of Dolphins and Porpoises. Swimming and Flying in Nature, New York: Plenum Press, 1975. 553-571
  • 6Fish F E, Biological Designs for Enhanced Maneuverability:Analysis of Marine Mammal Performance. In Tenth International Symposium on Unmanned Untethered Submersible Technology: Proceedings of the Special Sessionon Bio-Engineering Research Related to Autonomous Underwater Vehicles, Autonomous Undersea Systems Institute, 1997, 109-117
  • 7Fish F E, Rohr J J. Review of Dolphin Hydrodynamics and Swimming Performance. United State Navy Technical Report 1 801, 1999
  • 8Triantafyllou M S, Triantafyllou G S. An Efficient Swimming Machine. Scientific American, 1995, 272:64-70
  • 9Sfakiotakis M, Lane D M, Davies J B C. Review of Fish Swimming Modes for Aquatic Locomotion. IEEE J Oceanic Eng, 1999, 24(2): 237-252
  • 10Dickinson M H, Farley C F, Full R J, et al. How Animals Move: an Integrative View. Science, 2000, 288:100-106

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部