期刊文献+

深度学习脑肿瘤MRI图像分类研究进展 被引量:3

Research progress of deep learning brain tumor MRI image classification
下载PDF
导出
摘要 大数据环境下肿瘤病例为肿瘤的临床诊断提供了庞大的数据资源,同时人工智能技术的发展促进深度学习应用水平不断提升,推动肿瘤MRI图像的快速、精准分类进入深度学习时代。本文主要分为以下四个部分,第一部分针对目前主流的深度学习MRI图像分类模型:卷积神经网络、深度信念网络、深度残差网络、Vision Transformer展开综述。首先,阐述了各模型的历史沿袭、最初针对的问题及主要思想;其次,概括了模型的网络架构并探讨其在MRI图像分类上的最新应用;然后,分析了模型的特点、目前存在的局限及各自发展趋势。第二部分论述了一些影响分类性能的关键因素;第三部分提出了一些广泛使用的性能增强技术;文章最后讨论了深度学习分类MRI图像在临床实践中面临的主要限制,并对未来研究方向进行展望。本文的结果可为研究人员提供一个全面的比较,以及各种深度学习模型的有效性,有望促进脑肿瘤研究的进展。 In the big data environment,tumor cases provide huge data resources for the clinical diagnosis of tumors.Meanwhile,the development of artificial intelligence technology promotes the continuous improvement of the application level of deep learning and promotes the rapid and accurate classification of tumor images in the era of deep learning.This paper is mainly divided into the following four parts.The first part reviews the current mainstream deep learning MRI image classification models:convolutional neural network,deep belief network,deep residual network,and Vision Transformer.Firstly,the historical lineage,the initial problems,and the main ideas of each model are described.Secondly,the network architecture of the model is summarized and its latest application in MRI image classification is discussed.Then,the characteristics,limitations,and development trends of the models are analyzed.The second part discusses some key factors that affect classification performance.In the third part,some widely used performance enhancement techniques are proposed.Finally,the main limitations of deep learning classification of MRI images in clinical practice are discussed,and future research directions have been prospected.The results presented here can provide researchers with a comprehensive comparison as well as the effectiveness of various deep learning models,which is expected to promote the progress of brain tumor research.
作者 张恒 张赛 孙佳伟 陆正大 倪昕晔 ZHANG Heng;ZHANG Sai;SUN Jiawei;LU Zhengda;NI Xinye(Department of Radiotherapy,Changzhou Second Peope's Hospital,Nanjing Medical University,Changzhou 213003,China;Jiangsu Province Engineering Research Center of Medical Physics,Changzhou 213003,China;Medical Physics Research Center,Nanjing Medical University,Changzhou 213003,China;Key Laboratory of Medical Physics of Changzhou,Changzhou 213003,China)
出处 《磁共振成像》 CAS CSCD 北大核心 2023年第1期166-171,193,共7页 Chinese Journal of Magnetic Resonance Imaging
基金 江苏省重点研发计划社会发展项目(编号:BE2022720) 江苏省卫健委面上项目(编号:M2020006)。
关键词 深度学习 脑肿瘤 图像分类 磁共振成像 人工智能 神经网络 deep learning brain tumor image classification magnetic resonance imaging artificial intelligence neural networks
  • 相关文献

参考文献3

二级参考文献154

  • 1M. E Gupta and M. M. Shringirishi, Implementation of brain tumor segmentation in brain mr images using k-means clustering and fuzzy c-means algorithm, International Journal of Computers & Technology, vol. 5, no. 1, pp. 54- 59, 2013.
  • 2D. N. Louis, H. Ohgaki, O. D. Wiestler, W. K. Cavenee, E C. Burger, A. Jouvet, B. W. Scheithauer, and E Kleihues, The 2007 who classification of tumours of the central nervous system, Acta Neuropathologica, vol. 114, no. 2, pp. 97-109, 2007.
  • 3Z.-E Liang and P. C. Lauterbur, Principles of Magnetic Resonance Imaging: A Signal Processing Perspective. The Institute of Electrical and Electronics Engineers Press, 2000.
  • 4E Y. Wen, D. R. Macdonald, D. A. Reardon, T. E Cloughesy, A. G. Sorensen, E. Galanis, J. DeGroot, W. Wick, M. R. Gilbert, A. B. Lassman, et al., Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group, Journal of Clinical Oncology, vol. 28, no. 11, pp. 1963- 1972, 2010.
  • 5A. Drevelegas and N. Papanikolaou, Imaging modalities in brain tumors, in Imaging of Brain Tumors with Histological Correlations. Springer, 2011, pp. 13-33.
  • 6J. J. Corso, E. Sharon, S. Dube, S. E1-Saden, U. Sinha, and A. Yuille, Efficient multilevel brain tumor segmentation with integrated bayesian model classification, Medical Imaging, IEEE Transactions on, vol. 27, no. 5, pp. 629-640, 2008.
  • 7Y.-L. You, W. Xu, A. Tannenbaum, and M. Kaveh, Behavioral analysis of anisotropic diffusion in image processing, Image Processing, IEEE Transactions on, vol. 5, no. 11, pp. 1539-1553, 1996.
  • 8J. Weickert, Anisotropic Diffusion in Image Processing, vol. 1. Teubner Stuttgart, 1998.
  • 9T. Ogden, Essential Wavelets for Statistical Applications and Data Analysis. Springer, 1997.
  • 10R. D. Nowak, Wavelet-based rician noise removal for magnetic resonance imaging, Image Processing, IEEE Transactions on, vol. 8, no. 10, pp. 1408-1419, 1999.

共引文献61

同被引文献21

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部