期刊文献+

基于势能与好奇心机制的室内环境导航研究

Research on indoor environment navigation based on potentialenergy and curiosity mechanism
下载PDF
导出
摘要 研究了深度强化学习(DRL)方法在室内环境下移动机器人导航策略中的路径规划问题。针对外部奖励稀疏使得机器人难以完成导航任务的问题,设计了基于势能的外部奖励函数;针对机器人易陷入奖励局部极小值所引发的次优策略下最大奖励过早收敛问题,引入基于内在好奇心模块(ICM)内部奖励作为奖励增强信号,并结合近端策略优化(PPO)算法在ROS和Gazebo搭建的室内装修仿真环境下作对比实验。实验结果表明:添加了外部势能奖励函数和好奇心内部奖励的PPO模型在仿真环境中表现出了良好的性能。 Path planning problem of mobile robot navigation strategy using deep reinforcement learning(DRL)in indoor environment is studied.Aiming at the problem that the robot can not complete the navigation task due to the sparse external reward,the external reward function based on potential energy is designed.In order to solve the problem of premature convergence of maximum reward under suboptimal strategy caused by the tendency of robot to fall into local minimum of reward,the internal reward based on intrinsic curiosity module(ICM)is introduced as the signal of reward enhancement,and combined with the proximal policy optimization(PPO)algorithm,comparison experiment are carried out in the simulation environment of interior decoration built by ROS and Gazebo.Experimental result shows that the PPO model with external potential energy reward function and internal curiosity reward has good performance in the simulation environment.
作者 朱林 赵东杰 徐茂 ZHU Lin;ZHAO Dongjie;XU Mao(Institute for Future,College of Automation,Qingdao University,Qingdao 266071,China;Shandong Key Laboratory of Industrial Control Technology,Qingdao 266071,China)
出处 《传感器与微系统》 CSCD 北大核心 2023年第1期38-42,共5页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(U1813202)。
关键词 深度强化学习 室内环境 移动机器人 外部奖励 内部奖励 deep reinforcement learning(DRL) indoor environment mobile robot extrinsic rewards internal rewards
  • 相关文献

参考文献3

二级参考文献74

  • 1戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 2罗泽举,宋丽红,薛宇峰,朱思铭.一类基于SVM/RBF的气象模型预测系统[J].计算机工程,2006,32(21):31-32. 被引量:11
  • 3Hofner C, Schmidt G. Path planning and guidance techniques for an autonomous mobile robot[J]. Robotic and Autonomous Systems, 1995, 14(2): 199-212.
  • 4Schmidt G, Hofner C. An advaced planning and navigation approach for autonomous cleaning robot operationa[C]. IEEE Int Conf Intelligent Robots System. Victoria, 1998: 1230-1235.
  • 5Vasudevan C, Ganesan K. Case-based path planning for autonomous underwater vehicles[C]. IEEE Int Symposium on Intelligent Control. Columbus, 1994:160-165.
  • 6Liu Y. Zhu S, Jin B, et al. Sensory navigation of autonomous cleaning robots[C]. The 5th World Conf on Intelligent Control Automation. Hangzhou, 2004: 4793- 4796.
  • 7De Carvalho R N, Vidal H A, Vieira P, et al. Complete coverage path planning and guidance for cleaning robots[C]. IEEE Int Conf Industry Electrontics. Guimaraes, 1997: 677-682.
  • 8Ram A, Santamaria J C. Continuous case-based reasoning[J]. Artificial Inteligence, 1997, 90(1/2): 25-77.
  • 9Arleo A, Smeraldi E Gerstner W. Cognitive navigation based on non-uniform Gabor space sampling, unsupervised growing Networks, and reinforcement learning[J]. IEEE Trans on Neural Network, 2004, 15(3): 639-652.
  • 10Fujimura K, Samet H. A hierarchical strategy for path planning among moving obstacles[J]. IEEE Trans on Robotic Automation, 1989, 5(1): 61-69.

共引文献318

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部