摘要
硅基微腔光子学测温包括基于热折变效应的协议温度测量以及基于光机谐振原理的热力学温度测量,国际温度咨询委员会(CCT)在2018-2027战略规划中,将硅基微腔光子学测温确定为接触测温新兴技术的主要发展方向。本文简要介绍上述两种测温理论机理,综述近年来美国国家标准与技术研究院(NIST)、欧洲计量合作组织(EURAMET)等发达国家计量院与计量组织在上述领域的研究进展,以及来自于学术界的探索性研究内容;最后介绍中国计量科学研究院在毫开尔文(mK)级微腔光子温度计制备与测试、基于法诺共振的亚mK级分辨力提升方法、基于氮化硅微腔的亚mK级自热温升抑制等研究进展。
Silicon microcavity photonic temperature measurement includes International Temperature Scale(ITS)temperature measurement based on the thermo-refractive effect and thermodynamic temperature sensing based on optomechanical principle.In the 2018-2027 development strategy of the Consultive Committee of Temperature(CCT),silicon microcavity photonic thermometry was designated as the first priority within the emerging contact temperature measurement techniques.This paper briefly introduces the mechanisms of the two photonic temperature measurement techniques,and summarizes the research progress of metrology institutes and metrology organizations such as NIST in the United States and EURAMET in Europe in the above fields in recent years,as well as the exploratory research achievement from academia.Finally,the latest research results of the National Institute of Metrology,China are introduced including the fabrication and testing of self-developed photonic thermometers with a milli-Kelvin(mK)level resolution,the sub-mK level resolution enhancement approach by means of the Fano resonance,and the sub-mK level self-heating suppression by Si3N4 microcavity.
作者
潘奕捷
王瑾
张诚
屈继峰
段宇宁
PAN Yijie;WANG Jin;ZHANG Cheng;QU Jifeng;DUAN Yuning(National Institute of Metrology,Beijing 100029,China;School of Optics and Photonics,Beijing Institute of Technology,Beijing 100081,China)
出处
《计测技术》
2022年第6期1-10,共10页
Metrology & Measurement Technology
基金
科技部重点研发计划项目(2022YFF0608304)
国家自然科学基金(62075206,62205324)。
关键词
温度计量
光学微腔
光子学测温
热折变效应
光机械
temperature metrology
optical microcavity
photonic thermometry
thermo-refractive effect
optomechanical