期刊文献+

5G电力网络切片流量预测及主动调整策略 被引量:5

5G Power Network Slice Traffic Prediction and Proactive Adjustment Strategy
下载PDF
导出
摘要 随着5G的推广,网络切片技术也得到了普遍应用,它将物理资源虚拟化,使得网络能够承载多种类型的业务,由此适应于新形势下以及未来电网泛在感知、智能互联式的发展。电力网络中的控制类、采集类、应用类等业务产生了多场景下海量的电力5G切片,也产生了较大的切片优化管理需求。文章在传统的5G切片基础上,结合电网不同业务的特点,提出了利用深度学习进行流量预测的方案,并依据预测结果生成切片资源策略,特别是针对电力5G切片中存在较多的关键性业务切片提出了混合隔离策略。通过实验平台演示和评估,此方法的网络利用效率从传统切片的46.3%提高到71.5%。 With the promotion of 5G,network slicing technology is also widely used.It virtualizes physical resources so that the network can carry multiple types of services,adapting to the new situation and the future development of ubiquitous perception and intelligent interconnection of the power grid.The control,acquisition,and application services in the power network have produced a large number of 5G network slices in multiple scenarios,and have also generated a large number of slice optimization management requirements.Based on the traditional 5G slicing and combining the characteristics of different services in the power grid,this paper proposes a solution for traffic prediction using deep learning,and generates a slicing resource strategy based on the prediction results.In particular,a hybrid isolation strategy is proposed for many key service slices in power 5G slices.Through the demonstration and evaluation of the experimental platform,the network utilization efficiency of this method has increased from 46.3%of the traditional slice to 71.5%.
作者 周鹏 杨爽 桑玮婧 郭脐泽 顾仁涛 胡阳 孙嘉赛 ZHOU Peng;YANG Shuang;SANG Weijing;GUO Qize;GU Rentao;HU Yang;SUN Jiasai(Information&Telecommunication Branch,State Grid Zhejiang Electric Power Co.,Ltd.,Hangzhou 310000,Zhejiang Province,China;Nari Group Corporation(State Grid Electric Power Research Institute),Nanjing 210003,Jiangsu Province,China;Beijing University of Posts and Telecommunications,Haidian District,Beijing 100876,China)
出处 《电力信息与通信技术》 2023年第1期34-39,共6页 Electric Power Information and Communication Technology
基金 国家电网有限公司总部管理技术项目资助“电力5G网络切片装置及综合管控技术研究与应用研究”(5700-202040380A-0-0-00)。
关键词 网络切片 流量预测 主动调整 电力网络 混合隔离 机器学习 network slice traffic prediction active adjustment power network hybrid isolation machine learning
  • 相关文献

参考文献7

二级参考文献66

共引文献133

同被引文献39

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部