期刊文献+

压电叠堆作动器率相关迟滞非线性建模研究 被引量:2

Modeling on Rate-Dependent Hysteresis Nonlinear Characteristics of Piezoelectric Stack Actuators
下载PDF
导出
摘要 针对压电叠堆作动器的率相关迟滞非线性特性,该文提出了一种基于asymmetric unilateral backlash(aubacklash)算子的BP神经网络率相关迟滞建模方法。首先提出了改进的aubacklash算子,改善了Prandtl-Ishlinskii(PI)模型backlash算子在原点处残余位移及严格中心对称的问题;其次分析了压电叠堆作动器迟滞的率相关记忆特性,提出了率相关BP神经网络迟滞模型;最后搭建了迟滞建模精度评估系统,采用Levenberg-Marquardt(L-M)算法辨识aubacklash算子模型参数,确定了BP神经网络模型最优结构参数。实验结果表明,在高、低单一频率及混合频率下,BP神经网络模型较PI模型均方误差降低了70.90%~89.98%,相对误差降低了70.69%~89.84%,验证了该模型的精度与频率适应性。 Aiming at the nonlinear characteristics of rate-dependent hysteresis of piezoelectric stack actuators, a BP neural network rate-dependent hysteresis modeling method based on the Asymmetric unilateral backlash(aubacklash) operator is proposed in this paper. Firstly, an improved aubacklash operator is proposed to improve the residual displacement at the origin and strict center-symmetry of the backlash operator of Prandtl-Ishlinskii(PI) model. Secondly, the rate-dependent memory characteristics of hysteresis of piezoelectric stack actuator are analyzed, and a rate-dependent BP neural network hysteresis model is proposed. Finally, the accuracy evaluation system of hysterectomy modeling is set up, the parameters of aubacklash operator model are identified by Levenberg-Marquardt(L-M) algorithm, and the optimal structural parameters of BP neural network model are determined. The experimental results show that the mean square error of BP neural network model is reduced by 70.90%~89.98% and the relative error is reduced by 70.69%~89.84% compared with the traditional PI model at high and low single frequency and mixed frequency, which verifies the accuracy and frequency adaptability of the model.
作者 王琴琴 周孟德 孙晨晋 任宇航 张新雨 刘巍 WANG Qinqin;ZHOU Mengde;SUN Chenjin;REN Yuhang;ZHANG Xinyu;LIU Wei(School of Mechanical Engineering,Dalian University of Technology,Dalian 116024,China)
出处 《压电与声光》 CAS 北大核心 2022年第6期907-912,共6页 Piezoelectrics & Acoustooptics
基金 国家重点研发计划重点专项基金资助项目(2018YFA0703304) 国家自然科学基金资助项目(52105543,52125504) 中国博士后科学基金资助项目(2021TQ0056) 辽宁省科学技术计划基金资助项目(2020-BS-059)。
关键词 压电叠堆作动器 迟滞非线性 非对称单边backlash算子 BP神经网络 率相关建模 piezoelectric stack actuator hysteretic nonlinearity asymmetric unilateral backlash operator BP neural network rate-dependent modeling
  • 相关文献

参考文献7

二级参考文献55

共引文献33

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部