期刊文献+

面向真实道路驾驶行为训练环境研究 被引量:1

Research on Driving Behavior Training Environment for Real Road
下载PDF
导出
摘要 为方便驾驶行为智能体的训练与算法研究,运用强化学习算法构建面向真实道路行车规则的仿真环境。提出基于高德开放平台的路径规划及交通状况、兴趣点搜索、天气查询、坐标转换应用程序编程接口,部署人工智能平台OpenAI gym仿真接口环境UBI_Robot-v0的设计方法,有助于在真实道路仿真环境下对驾驶行为智能体进行训练的研究。测试实验结果表明,通过对驾车的环境状态和动作进行设计,实现仿真车主从驾车环境交互数据中多风险维度结合下学习最优的驾驶行为,展现出良好的驾驶行为训练及研究前景。 In order to facilitate the training and algorithm research of intelligent driving behavior, a simulation environment oriented to real road driving rules is constructed based on reinforcement learning algorithm.The application programming interface of route planning and traffic conditions, search for interests, weather query, and coordinate conversion based on AutoNavi open platform is proposed, and the design method of UBI_Robot-v0,the simulation interface environment of artificial intelligence platform OpenAI gym is deployed, which is helpful for research on traning driving behavior agents in a real road simulation environment.The experimental test results show that by designing the environmental state and action of driving, the owner of simulated car can learn the optimal driving behavior from the combination of multiple risk dimensions in the interactive data of the driving environment, showing a good prospect for driving behavior training and research.
作者 李康成 徐野 哈乐 LI Kangcheng;XU Ye;HA Le(Shenyang Ligong University,Shenyang,110159,China;North General Hospital,Medical Engineering Department,Shenyang,110013,China)
出处 《沈阳理工大学学报》 CAS 2023年第1期19-27,共9页 Journal of Shenyang Ligong University
基金 国家自然科学基金项目(61373159) 沈阳理工大学重点学科、重点实验室开放基金项目(4771004kfs18)。
关键词 行车规则 高德开发平台 驾驶行为 仿真驾车环境 driving rules AutoNavi driving behavior simulated driving environment
  • 相关文献

参考文献8

二级参考文献66

  • 1魏英姿 ,赵明扬 .一种基于强化学习的作业车间动态调度方法[J].自动化学报,2005,31(5):765-771. 被引量:19
  • 2侯智,陈世平.基于Kano模型的用户需求重要度调整方法研究[J].计算机集成制造系统,2005,11(12):1785-1789. 被引量:82
  • 3高阳,周如益,王皓,曹志新.平均奖赏强化学习算法研究[J].计算机学报,2007,30(8):1372-1378. 被引量:38
  • 4BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 5BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 6HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 7BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 8LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 9VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 10VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.

共引文献1155

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部