期刊文献+

石墨烯增强铝基复合材料的热变形本构方程研究

Study on Hot Deformation Constitutive Equation of Graphene Reinforced Aluminum Matrix Composite
下载PDF
导出
摘要 采用热模拟实验机对石墨烯增强7075铝合金复合材料进行高温热压缩实验,变形温度为300~450℃、应变速率为0.001~1 s^(-1),分析其在不同应变速率及温度条件下的高温流变应力特征,并以实验数据为基础,通过函数拟合确定包含应变、应变速率和温度等变形参数的双曲正弦本构方程。研究结果表明:铝基复合材料热压缩变形时流变应力随应变增加迅速增大,达到峰值应力后略有下降且出现锯齿状波动;给出的双曲正弦本构方程可以较好地描述流变应力与应变、应变速率及温度之间的关系,计算值与实验值吻合良好。 The high temperature compression experiment of graphene reinforced 7075 aluminum alloy composite was carried out with a thermal simulation tester.The deformation temperature was 300~450 ℃ and the strain rate was 0.001~1 s-1.The flow stress characteristics under different strain rates and temperatures were analyzed.Based on the experimental data, the hyperbolic sinusoidal constitutive equation including deformation parameters such as strain, strain rate and temperature was determined by function fitting.The results show that the flow stress of aluminum matrix composites increases rapidly with the increase of strain during thermal compression deformation, decreases slightly after reaching the peak stress and fluctuates in a zigzag manner.The relationship between flow stress and strain, strain rate and temperature can be well described by hyperbolic sinusoidal function.
作者 郭广思 王亮 杜晓明 李宁 GUO Guangsi;WANG Liang;DU Xiaoming;LI Ning(Shenyang Ligong University,Shenyang 110159,China)
出处 《沈阳理工大学学报》 CAS 2023年第1期68-72,84,共6页 Journal of Shenyang Ligong University
基金 辽宁省高等学校创新人才支持计划项目 沈阳市中青年科技创新人才计划项目(RC200355)。
关键词 石墨烯 铝基复合材料 热压缩变形 本构方程 graphene aluminum matrix composites hot compression deformation constitutive equation
  • 相关文献

参考文献6

二级参考文献31

  • 1管仁国,连超,赵占勇,钞润泽,刘春明.石墨烯铝基复合材料的制备及其性能[J].稀有金属材料与工程,2012,41(S2):607-611. 被引量:40
  • 2陈东,乐永康,白亮,马乃恒,李险峰,王浩伟.原位TiB_2/7055铝基复合材料的力学性能与阻尼性能[J].功能材料,2006,37(10):1599-1602. 被引量:18
  • 3NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5695):666-669.
  • 4LEE C,WEI X D,KYSAR J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
  • 5RAFIEE M A,RAFIEE J,WANG Z,et al.Enhanced mechanical properties of nanocomposites at low graphene content[J].ACS Nano,2009,3(12):3884-3890.
  • 6LIANG J J,HUANG Y,ZHANG L,et al.Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites[J].Adv Funct Mater,2009,19(14):2297-2302.
  • 7LIU J,YAN H X,JIANG K.Mechanical properties of graphene platelet-reinforced alumina ceramic composites[J].Cerm Int,2013,39(6):6215-6221.
  • 8SUN C,SONG M,WANG Z W,et al.Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites[J].J Mater Eng Perform,2011,20(9):1606-1612.
  • 9SONG M,HE Y H,FANG S F.Yield stress of SiC reinforced aluminum alloy composites[J].J Mater Sci,2010,45(15):4097-4110.
  • 10TOPCU I,GULSOY H O,KADIOGLU N,et al.Processing and mechanical properties of B4 C reinforced Al matrix composites[J].J Alloys and Compd,2009,482(1-2):516-521.

共引文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部