摘要
针对带时间窗的电动汽车物流配送路径优化问题,基于前景理论的价值函数量化了客户对电量补给的行为感知,由此设计了超时配送的补偿费用函数;并以补偿费用、充电费用、车辆行驶费用组成的配送总成本最低为目标,构建了决策模型,采用改进的遗传算法进行求解;最后通过Solomon-R101算例对模型及算法进行验证,得到的配送方案可以兼顾客户高满意度、高时效性、高载重量和低成本四个方面。
In this paper,in view of the route optimization problem with time window in the electric vehicle distribution operation,we quantified the customer’s perception of the power charging behavior based on the value function of the prospect theory,and thus designed the compensation cost function of overtime delivery.Next,with minimizing the total distribution cost as constituted by compensation cost,charging cost,and vehicle running expenses as the objective,we built a decision-making model,solved it using improved genetic algorithm,and finally verifed the model and the algorithm through a Solomon-R101 example,showing that the distribution plan obtained could simultaneously achieve high customer satisfaction,good timeliness,high load capacity and low cost.
作者
孟楠
王静
MENG Nan;WANG Jing(School of Management,Wuhan University of Science&Technology,Wuhan 430070,China)
出处
《物流技术》
2022年第11期61-65,145,共6页
Logistics Technology
基金
湖北省自然科学基金青年项目“满意度视角下基于前景理论的物流配送优化问题研究”(2020CFB142)。
关键词
纯电动汽车
配送路径优化
前景理论
改进的遗传算法
时间窗
pure electric vehicle
distribution route optimization
prospect theory
improved genetic algorithm
time window