摘要
为了提高尾矿库风险预警能力,针对尾矿库稳定性受多种风险因素影响,以及风险变化的非线性,提出1种融合集合经验模态分解(EEMD)和长短期记忆(LSTM)的尾矿库风险预测模型。首先,采用皮尔逊相关系数分析尾矿库风险因素之间的相关性;然后,使用EEMD方法分解非线性的位移序列;最后,构建LSTM网络模型预测位移变化。以某尾矿库为例,将EEMD-LSTM模型与EEMD-BP模型、LSTM模型对比分析,评估模型的有效性。研究结果表明:EEMD-LSTM模型对尾矿库风险的预测精度明显提高,对防范化解尾矿库安全风险具有重要意义。
In order to improve the risk early-warning capability of tailings ponds,and considering that the stability of tailings pond is affected by multiple risk factors,as well as the nonlinearity of risk change,a risk prediction model of tailings pond with the fusion of ensemble empirical mode decomposition(EEMD)and long short-term memory(LSTM)was proposed.Firstly,the Pearson correlation coefficient was used to analyze the correlation between the risk factors of tailings pond.Then,the EEMD method was used to decompose the nonlinear displacement sequence.Finally,the LSTM network model was constructed to predict the displacement change.Taking a tailings pond as an example,the EEMD-LSTM model was compared with the EEMD-BP model and the LSTM model to evaluate the effectiveness of the model.The results showed that the EEMD-LSTM model could significantly improve the prediction accuracy of tailings pond risk,which is of great significance for preventing and resolving the safety risk of tailings pond.
作者
马斌
张晨晨
赵怡晴
张旭芳
李彦令
MA Bin;ZHANG Chenchen;ZHAO Yiqing;ZHANG Xufang;LI Yanling(School of Information Engineering,North China University of Water Resources and Electric Power,Zhengzhou Henan 450046,China;School of Civil and Resources Engineering,University of Science and Technology Beijing,Beijing 100083,China;Zhengzhou University Multi-functional Design and Research Academy Co.,Ltd.,Zhengzhou Henan 450002,China)
出处
《中国安全生产科学技术》
CAS
CSCD
北大核心
2022年第12期116-121,共6页
Journal of Safety Science and Technology
基金
国家自然科学基金项目(51804018)
国家安监总局2018年安全生产重特大事故防治关键技术科技项目(henan-0004-2018AQ)
河南省高等学校重点科研项目(22B430019)。
关键词
尾矿库
风险预测
皮尔逊相关系数
集合经验模态分解
长短期记忆
tailings pond
risk prediction
Pearson correlation coefficient
ensemble empirical mode decomposition(EEMD)
long short-term memory(LSTM)