期刊文献+

带有量子修正的Zakharov方程的精确非线性波解

Exact nonlinear wave solutions for the modified Zakharov equation with a quantum correction
下载PDF
导出
摘要 利用动力系统定性理论和分支方法,研究了带有量子修正的Zakharov方程的精确非线性波解,给出了不同参数条件下的相图,沿相图中的特殊轨道进行了积分,得到量子Zakharov方程的4个孤立波解、7个奇异波解和24个周期波解共3类非线性波解。当参数取特殊值时,对部分周期波解取极限,给出了周期波解演化为相应的孤立波解和奇异波解的过程。 The exact nonlinear wave solutions of the Zakharov equation with a quantum correction are investigated by utilizing the bifurcation method and qualitative theory of dynamical systems.The phase portraits under different parameters are given,and we integrate along the special orbits in the phase portraits.Three kinds of nonlinear wave solutions of modified Zakharov equation can be obtained,including 4 solitary wave solutions,7 singular wave solutions and 24 periodic wave solutions.When the parameters H and k take special values,we take the limit of the periodic wave solutions,it is shown that the periodic wave solutions can evolve into corresponding solitary wave solutions and singular wave solutions.
作者 吴沈辉 宋明 WU Shenhui;SONG Ming(School of Mathematical Information,Shaoxing University,Shaoxing 312000,Zhejiang Province,China)
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2023年第1期30-37,共8页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(11775146)。
关键词 分支方法 修正Zakharov方程 非线性波解 bifurcation method the modified Zakharov equation nonlinear wave solutions
  • 相关文献

参考文献8

二级参考文献38

  • 1黄定江,张鸿庆.扩展的双曲函数法和Zakharov方程组的新精确孤立波解[J].物理学报,2004,53(8):2434-2438. 被引量:38
  • 2Zakharov V E. Collapse of Langmuir waves[J]. Sov Phys JETP, 1972, 35: 908-914.
  • 3Pecher H. An improved local well-posedness result for the one-dimensional Zakharov system[J]. J Math Anal Appl, 2008, 342 (2) : 1440-1454.
  • 4Guo B, Zhang J, Pu X. On the existence and tmiqueness of smooth solution for a generalized Zakharov equation[ J]. J Math Anal Appl, 2010, 365( 1 ) : 238-253.
  • 5Linares F, Matheus C. Well posedness for the 1D Zakharov-Rubenchik system[J]. Advances in Differential Equations, 2009, 14(3/4): 261-288.
  • 6Masmoudi N, Nakanishi K. Energy convergence for singular limits of Zakharov type systems [J]. Invent Math, 2008, 172(3) : 535-583.
  • 7Garcia L G, Haas F, de Oliveira L P L, Goedert J. Modified Zakharov equations for plasmas with a quantum correction[ J]. Phys Plasmas, 2005, 12( 1 ) : 1-8.
  • 8IAons J L. Quelques Mthodes de Rdsolution des Problnes aux Limites Non Lindaires [ M ]. Paris: Dunod Gauthier Villard, 1969 : 12, 53.
  • 9Added H, Added S. Existence globale dune solution regulire des equations de la turbulence de Langmuir en dimension 2[J]. CRA S, Paris, 1984, 299(12) : 551-554.
  • 10Added H S. Equations of Langmuir turbulence and nonlinear Schrodinger equation: smooth-ness and approximation[ J]. J Functional Analysis, 1988, 79 ( 1 ) : 183-210.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部