期刊文献+

融合知识图谱和多模态的文本分类研究 被引量:2

Research on Text Classification Based on Knowledge Graph and Multimodal
下载PDF
导出
摘要 传统文本分类方法主要是基于单模态数据所驱动的经验主义统计学习方法,缺乏对数据的理解能力,鲁棒性较差,单个模态的模型输入也难以有效分析互联网中越来越丰富的多模态化数据。针对此问题提出两种提高分类能力的方法:引入多模态信息到模型输入,旨在弥补单模态信息的局限性;引入知识图谱实体信息到模型输入,旨在丰富文本的语义信息,提高模型的泛化能力。模型使用BERT提取文本特征,改进的ResNet提取图像特征,TransE提取文本实体特征,通过前期融合方式输入到BERT模型中进行分类,在研究多标签分类问题的MM-IMDB数据集上F1值达到66.5%,在情感分析数据集Twitter15&17上ACC值达到71.1%,结果均优于其他模型。实验结果表明,引入多模态信息和实体信息能够提高模型的文本分类能力。 Traditional text classification methods are mainly empirical statistical learning methods driven by single-modal data,which lack the ability to understand the data,and have poor robustness.The single-modal input is also difficult to effectively analyze the increasingly rich multi-modal data in the Internet.To solve this problem,two methods to improve the classification ability are proposed:introducing multi-modal information into the model input in order to make up for the limitation of single-modal information;introducing knowledge graph entity information into the model input aims to enrich the semantic information of the text and improve model’s generalization ability.The model uses BERT to extract text features,improved ResNet to extract image features,and TransE to extract text entity features,which are input into the BERT model for classification through early fusion.On the MM-IMDB data set which studies the multi label classification problem,the F1 score reaches 66.5%,on the Twitter 15&17 data set which studies sentiment analysis problem,the ACC score reaches 71.1%,and the results are better than other models.Experimental results show that introducing multimodal information and entity information can improve the text classification ability of the model.
作者 景丽 姚克 JING Li;YAO Ke(School of Computer and Information Engineering,Henan University of Economics and Law,Zhengzhou 450046,China)
出处 《计算机工程与应用》 CSCD 北大核心 2023年第2期102-109,共8页 Computer Engineering and Applications
基金 国家自然科学基金(61806073) 河南省科技攻关项目(222102210339)。
关键词 自然语言处理 知识图谱 多模态 文本分类 BERT模型 natural language processing(NLP) knowledge graph multimodal text classification bidirectional encoder representation from transformers(BERT)
  • 相关文献

参考文献3

二级参考文献64

  • 1宋枫溪,高秀梅,刘树海,杨静宇.统计模式识别中的维数削减与低损降维[J].计算机学报,2005,28(11):1915-1922. 被引量:44
  • 2牛强,王志晓,陈岱,夏士雄.基于SVM的中文网页分类方法的研究[J].计算机工程与设计,2007,28(8):1893-1895. 被引量:22
  • 3刘华.基于关键短语的文本分类研究[J].中文信息学报,2007,21(4):34-41. 被引量:14
  • 4Salton G,Lesk M E.Computer Evaluation of Index and Text Processing. Association for Computing Machinery,1968,15(1).
  • 5Maron M E. On Relevance,Probabilistic Indexing and Information Retrieval. Journal of the ACM,1960,7(3).
  • 6Lewis D D. Feature Selection and Feature Extraction for Text Categorization. In Proceedings of Speech and Natural Language Workshop. Defense Advanced Research Projects Agency,Morgan Kaufmann,1992-02:212-217.
  • 7Yang Yiming,Liu Xin. A Re-examination of Text Categorization Methods. Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR),1999:42-49.
  • 8Maron M E, Kuhns J L. On relevance, probabilistic indexing and information retrieval[J]. Journal of the ACM (JACM), 1960, 7(3): 216-244.
  • 9Lewis D D. Naive (Bayes) at forty: The independence assumption in information retrieval[C]//Machine learning: ECML-98. Springer Berlin Heidelberg, 1998: 4-15.
  • 10Manning C D, Raghavan P, Schatze H. Introduction to information retrieval[M]. Cambridge: Cambridge university press, 2008.

共引文献242

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部