期刊文献+

融合高阶路径和非负矩阵分解的链路预测

Link Prediction Combining High-Order Path and Non-Negative Matrix Factorization
下载PDF
导出
摘要 现有的大多数加权网络链路预测方法仅考虑了自然权重,忽略了高阶加权路径信息贡献,导致预测准确度降低。为此,提出了融合高阶路径和非负矩阵分解的链路预测模型。首先,将任意权重网络的邻接矩阵映射到低秩隐特征空间,以捕获一阶权重链接信息;其次,根据节点强度计算链接权重强度,以获得局部相似度矩阵,并将其扩展为高阶路径相似度;最后,启用图正化方法耦合二阶和高阶路径相似度,以保持局部和全局结构。此外,利用拉格朗日乘法规则学习模型参数来获得最优因子矩阵。在6个典型的实际加权网络上与现有的主流加权网络链路预测方法进行比较分析,得到本模型性能最优。 Most of the existing weighted network link prediction methods only consider the natural weight and ignore the contribution of high-order weighted path information,which leads to the degradation of the prediction accuracy.To address this problem,a link prediction model that fuses natural weight links and higher-order path information with non-negative matrix decomposition is proposed.Firstly,the model maps the adjacency matrix of an arbitrary weight network to a low-rank hidden feature space to capture first-order weight link information.Secondly,the local similarity matrix is obtained by calculating the link weight strength based on the node power strength,and then the local similarity matrix is extended by the higher-order path similarity.Finally,the graph normalization method is enabled to couple the second-order and higher-order path similarities to maintain the local and global structures.In addition,Lagrange multiplication rules are used to learn the model parameters to obtain the optimal factor matrices.The experimental results on six typical real weighted networks compared with the existing mainstream weighted network link prediction methods show that the proposed model has the optimal performance.
作者 陈广福 陈浩 CHEN Guangfu;CHEN Hao(College of Mathematics and Computer Science,Wuyi University,Wuyishan Fujian 354300,China;Fujian Key Laboratory of Big Data Application and Intellectualization for Tea Industry,Wuyishan Fujian 354300,China;College of Electronical and Information Engineering,Jingjiang College of Jiangsu University,Zhenjiang Jiangsu 212013,China)
出处 《重庆科技学院学报(自然科学版)》 CAS 2022年第6期42-48,共7页 Journal of Chongqing University of Science and Technology:Natural Sciences Edition
基金 福建省自然科学基金项目“基于非负矩阵分解的链路预测方法研究”(2021J011146) 武夷学院引进人才科研启动基金“基于非负矩阵分解的复杂网络链路预测算法研究”(YJ202017)。
关键词 加权网络 链路预测 图正则化 高阶路径 weighted network link prediction graph regularization high-order path
  • 相关文献

参考文献7

二级参考文献27

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部