期刊文献+

基于复数空间内矩阵映射的知识表示方法 被引量:1

Knowledge representation using matrix mapping in complex space
下载PDF
导出
摘要 为同时建模知识图谱中存在的多对一、多对多等复杂关系以及对称、逆、组合等关系模式,提出一种基于复数空间内矩阵映射的知识表示方法(MMCS方法)。将实体以及实体间关系表示为离散的复数矢量,利用矩阵映射将离散的复数矢量聚簇为相近的矢量,用于表示实体间的多对一、多对多等复杂关系。利用复数空间的旋转策略,表示离散复数矢量之间的对称、逆、组合等关系模式。在公开的数据集上进行相关的链接预测实验,实验结果表明,MMCS在预测三元组中缺失的实体时比其它方法有显著提升。 To simultaneously model the many-to-one,many-to-many and other complex relationships and relationship modes such as symmetry,inverse and composition in the knowledge graph,a knowledge representation method based on matrix mapping in the complex space(MMCS)was proposed.The entities and the inter-entity relationships were represented as discrete complex vectors.The discrete complex vectors were clustered into similar vectors,matrix mapping was used to represent complex relationships between entities,such as many-to-one and many-to-many.The relation patterns including symmetry,inverse and composition between discrete complex vectors were represented through the use of rotation strategy of the complex space.The public datasets were used for the related link prediction experiment.Experimental results show that using MMCS has a significant improvement in predicting missing entities in triples compared to other methods.
作者 田应彪 安敬民 李冠宇 TIAN Ying-biao;AN Jing-min;LI Guan-yu(Information Science and Technology College,Dalian Maritime University,Dalian 116026,China)
出处 《计算机工程与设计》 北大核心 2023年第1期166-173,共8页 Computer Engineering and Design
基金 国家自然科学基金项目(61976032)。
关键词 知识图谱 知识表示 知识图谱补全 链接预测 关系模式 复杂关系 向量表示 knowledge graph knowledge representation knowledge graph completion link prediction relation patterns complex relationship vector representation
  • 相关文献

参考文献3

二级参考文献90

  • 1LUAN Shangmin,DAI Guozhong,LI Wei.A programmable approach to revising knowledge bases[J].Science in China(Series F),2005,48(6):681-692. 被引量:7
  • 2Miller G A. WordNet: A lexical database for English [J]. Communications of the ACM, 1995, 38(11): 39-41.
  • 3Bollacker K, Evans C, Paritosh P, et al. Freebase: A collaboratively created graph database for structuring human knowledge [C] //Proe of KDD. New York: ACM, 2008: 1247-1250.
  • 4Miller E. An introduction to the resource description framework [J]. Bulletin of the American Society for Information Science and Technology, 1998, 25(1): 15-19.
  • 5Bengio Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2099, 2 (1) 1-127.
  • 6Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
  • 7Turian J, Ratinov L, Bengio Y. Word representations: A simple and general method for semi-supervised learning [C]// Proc of ACL. Stroudsburg, PA: ACL, 2010:384-394.
  • 8Manning C D, Raghavan P, Schutze H. Introduction to Information Retrieval [M]. Cambridge, UK: Cambridge University Press, 2008.
  • 9Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their eompositionality [C] //Proe of NIPS. Cambridge, MA: MIT Press, 2013:3111-3119.
  • 10Zhao Y, Liu Z, Sun M. Phrase type sensitive tensor indexing model for semantic composition [C] //Proc of AAAI. Menlo Park, CA: AAAI, 2015: 2195-2202.

共引文献280

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部