期刊文献+

线粒体调控免疫系统激活及代谢调节的分子机制

Molecular mechanism of mitochondrial regulation on immune system activation and metabolism
原文传递
导出
摘要 作为真核细胞至关重要的细胞器,线粒体不仅参与细胞能量代谢和细胞分化、信息传递、凋亡、调控细胞生长和周期等多种生物学过程,还参与到机体的免疫系统激活和免疫调节.免疫代谢被认为是控制免疫细胞增殖和分化的关键因素.静息淋巴细胞通过氧化磷酸化(OXPHOS)和脂肪酸氧化产生能量,而活化淋巴细胞则迅速转入糖酵解.OXPHOS及通过电子传递链产生的线粒体活性氧参与到免疫细胞的许多功能.此外,线粒体是一种动态细胞器,可提供线粒体DNA等免疫原性分子,导致免疫系统激活.本文主要从免疫原性和免疫代谢和两个方面综述线粒体在激活和调节免疫系统方面的分子机制. As a vital organelle of eukaryotic cells,mitochondria not only participate in a variety of biological processes,such as cell energy metabolism and cell differentiation,information transmission,apoptosis,regulation of cell growth and cycle,but also involved in immune system activation and immune regulation.Immune metabolism is considered to be the key factor to control the proliferation and differentiation of immune cells.Resting lymphocytes provide energy through oxidative phosphorylation(OXPHOS)and fatty acid oxidation,while activated lymphocytes rapidly transfer to glycolysis.OXPHOS and mitochondrial reactive oxygen species produced through the electron transport chain are associated with many functions of immune cells.In addition,mitochondria are dynamic organelles,which can generate immunogenic molecules such as mitochondrial DNA,leading to the activation of the immune system.This article mainly reviews the molecular mechanism of mitochondria in activating and regulating the immune system from immunogenicity and immune metabolism.
作者 李东航 李宁 耿庆 Li Donghang;Li Ning;Geng Qing(Department of Thoracic Surgery,Renmin Hospital of Wuhan University,Wuhan 430060,China)
出处 《中华实验外科杂志》 CAS 北大核心 2022年第12期2521-2524,共4页 Chinese Journal of Experimental Surgery
基金 国家自然科学基金(8210082163、81770095、81800343) 中央高校基本科研专项基金(2042021kf0081) 湖北省自然科学基金创新群体(2020CFA027)。
关键词 免疫激活 代谢调节 线粒体DNA 线粒体活性氧 Immune activation Metabolism regulation Mitochondrial DNA Mitochondrial reactive oxygen species
  • 相关文献

参考文献4

二级参考文献117

  • 1Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immuno12002; 20:197-216.
  • 2Chen GY, Nunez G. Sterile inflammation: sensing and react- ing to damage. Nat Rev lmmuno12010; 10:826-837.
  • 3Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. JGen Physiol 1927; 8:519-530.
  • 4Sbarra AJ, Karnovsky ML. The biochemical basis of phago- cytosis. I. Metabolic changes during the ingestion of parti- cles by polymorphonuclear leukocytes. J Biol Chem 1959; 234:1355-1362.
  • 5Guthrie LA, McPhail LC, Henson PM, Johnston Jr RB. Prim- ing of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased ac- tivity of the superoxide-producing enzyme. J Exp Med 1984; 160:1656-1671.
  • 6Borregaard N, Herlin T. Energy metabolism of human neutro- phils during phagocytosis. J Clin Invest 1982; 70:550-557.
  • 7Hard GC. Some biochemical aspects of the immune macro- phage. BrJExp Pathol 1970; 51:97-105.
  • 8Newsholme P, Gordon S, Newsholme EA. Rates of utiliza- tion and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. Biochem J 1987; 242:631-636.
  • 9Newsholme P, Curi R, Gordon S, Newsholme EA. Metabo- lism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 1986; 239:121- 125.
  • 10Krawczyk CM, Holowka T, Sun J, et al. Toll-like receptor-in- duced changes in glycolytic metabolism regulate dendritic cell activation. Blood 2010; 115:4742-4749.

共引文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部