期刊文献+

改进的指数函数方法求时空分数阶混合(1+1)维KdV方程的新精确解

New exact solutions of the space-time fractional mixed kdv equation using the improved exponential function-expansion method
下载PDF
导出
摘要 借助修正的Riemann-Liouvielle分数阶导数,采用了改进的指数函数展开法,得到了时空分数阶混合(1+1)维KdV方程的新精确解。先将时空分数阶混合(1+1)维KdV方程转化为整数阶方程;其次引入新的辅助常微分方程,得到方程在不同约束条件下的新精确解,最后对具有代表性的第一种情形下的新解进行了计算机仿真。 By using Riemann-Liouville fractional derivative and applying the improved Exponential function-expansion method, some new exact solutions of space-time fractional mixed KdV equation are obtained.At first, space-time fractional mixed KdV equation can be converted into the non-fractional ordinary differential equation.Later, a new auxiliary ordinary differential equantion is introduced, and some new exact solutions of space-time fractional mixed KdV equation under different constraints are constructed.At last, the new solution under the first representative case is simulated by computer.
作者 陈兆蕙 阳平华 CHEN Zhaohui;YANG Pinghua(School of Computer Engineering,Guangzhou City Institute of Technology,Guangzhou 510800,China)
出处 《南昌大学学报(理科版)》 CAS 北大核心 2022年第6期596-601,共6页 Journal of Nanchang University(Natural Science)
基金 广州市科技局基础及应用基础项目(202002030228)。
关键词 时空分数阶混合(1+1)维KdV方程 改进后的指数函数展开法 修正的Riemann-Liouville分数阶导数 精确解 space-time fractional mixed KdV equation the improved exponential function-expansion method Riemann-Liouville fractional derivative exact solutions
  • 相关文献

参考文献11

二级参考文献63

  • 1Parkes [J. A Note on Travelling-Wave Solutions to Lax's Seventh-Order KdV Equation[J]. Appl Math Cornput , 2009, 215(2): 864-865.
  • 2Wazwaz A M. New Travelling Wave Solutions of Different Physical Structures to Generalized BBM Equation[J]. Phys Lett A, 2006, 355(4/5): 358-362.
  • 3Lax PD. Integrals of Nonlinear Equations of Evolution and Solitary Waves[J]. Commun Pure Appl Math, 1968, 21: 467-490.
  • 4LOU Sen-yue , HUANG Guo-xiang, RUAN Hang-yu. Exact Solitary Waves in a Convecting Fluid[J].J Phys A: Math Gen, 1991, 24(11): L587-L590.
  • 5Wazwaz A M, Helal M A. Nonlinear Variants of the BBM Equation with Compact and Noncompact Physical Structures[J]. Chaos, Solitons &. Fractals, 2005, 26(3): 767-776.
  • 6Kudryashow N A. Meromorphic Solutions of Nonlinear Ordinary Differential Equations[J]. Communin Nonlinear Sci Numer Simul, 2010, 15(10): 2778-2790.
  • 7Yusufoglu E, Bekir A. Symbolic Computation and New Families of Exact Travelling Solutions for the Kawahara and Modified Kawahara Equations[J]. Comput &. Math Appl , 2008, 55(8): 1113-1121.
  • 8Asian I. Exact and Explicit Solutions to Some Nonlinear Evolution Equations by Utilizing the CG' /G)-Expansion Method[J]. Appl Math Cornput, 2009, 215(2): 857-863.
  • 9Biswas A, Konar S, Zerrad E. Soliton Perturbation Theory for the General Modified Degasperis-Procesi Camasa-Holm Equation[J]. Inte[J Mod Math, 2007, 2(1): 35-40.
  • 10Bridges TJ, Derks G. Linear Instability of Solitary Wave Solutions of the Kawahara Equation and Its Generalizations[J]. SIAMJ Math Anal, 2002, 33(6): 1356-1378.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部