期刊文献+

联合空-谱信息的高光谱图像噪声估计

Noise Estimation Based on Combined Spatial and Spectral Information for Hyperspectral Image
下载PDF
导出
摘要 在纹理丰富的高光谱图像中获得精确的噪声估计,是噪声估计任务中的难点。本文基于高光谱图像的空间规律性和光谱相关性,提出一种基于超像素分割的光谱去相关法。同质区域划分是许多噪声估计方法的关键步骤,精确的同质区域划分能有效提高噪声估计精度。为此,将简单线性迭代聚类算法(Simple linear iterative clustering algorithm,SLIC)与光谱-空间相似性结合,划分高光谱图像为局部结构相似的图像块,以保持同质特征;为了提高光谱间的区分能力,将光谱信息散度和光谱角联合作为光谱距离;结合多元线性回归在同质区域内去除光谱相关性,在获得的残差图上估计噪声水平。对不同地物复杂程度的模拟图像,添加不同程度的噪声,通过与多种方法比较,验证了本文方法的有效性和稳定性。最后,本文方法成功应用于Urban数据的噪声水平估计,准确识别出受噪声严重污染的波段。 Obtaining accurate noise estimation in texture-rich hyperspectral images is difficult in the noise estimation task.A spectral decorrelation method based on the spatial regularity and spectral correlation of hyperspectral images is described in this paper.Homogenous region division is a key step in many noise estimation methods,and a precise homogeneous region division can effectively improve the accuracy of noise estimation.To this end,a simple linear iterative clustering algorithm is combined with spectralspatial similarity to segment hyperspectral images into locally structured similar image blocks to maintain homogeneous features.Spectral information divergence and spectral angle are combined as the spectral distance measurement to improve the ability of discrimination between spectra.Spectral correlations are removed within homogeneous regions by multiple linear regression to obtain the noise levels of the residual images.Various degrees of noise are added to simulated images of varying ground complexity,and the effectiveness and stability of this method are verified by comparison with a variety of methods.Finally,the proposed method is successfully applied to noise level estimation of Urban data,and can accurately identify bands heavily polluted by noise.
作者 张耹铭 黄丹飞 刘智颖 钟艾琦 ZHANG Qinming;HUANG Danfei;LIU Zhiying;ZHONG Aiqi(School of Opto-electronic Engineering,Changchun University of Science and Technology,Changchun 130022,China)
出处 《数据采集与处理》 CSCD 北大核心 2023年第1期186-192,共7页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61890963)。
关键词 高光谱图像 噪声估计 同质区域划分 超像素分割 多元线性回归 hyperspectral image noise estimation homogenous region division superpixel segmentation multiple linear regression
  • 相关文献

参考文献3

二级参考文献11

  • 1Zhang Z,IEEE Int Conference on Acoustic Speech and Signal Processing,1998年,5卷,2897页
  • 2Corner B R.Noise Estimation in Remote Sensing Imagery Using Data Masking[J].International Journal of Remote Sensing,2003,24(4):689-702.
  • 3Freek D,Van Der Meer,Steven M Dejong.Imaging Spectrometry:Based Principles and Prospective Applications[M].Netherlands:Kluwer Academic Publishers,2001.
  • 4Paul J Curran,Jennifer L Dungan.Estimation of Signal-to-Noise:A New Procedure Applied to AVIRIS Data[J].IEEE Trans.Geosci.Remote Sensing,1989,27(5):620-628.
  • 5Gao B C.An Operational Method for Estimating Signal to Noise Ratios from Data Acquired with Imaging Spectrometers[J].Remote Sensing of Environment,1993,43(1):23-33.
  • 6Roger R E,Arnold J F.Reliably Estimating the Noise in AVIRIS Hyperspectral Images[J].International Journal of Remote Sensing,1996,17(10):1951-1962.
  • 7Canny J.A Computational Approach to Edge Detect[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
  • 8陈秋林,薛永祺.OMIS成像光谱数据信噪比的估算[J].遥感学报,2000,4(4):284-289. 被引量:23
  • 9王晓飞,侯传龙,阎秋静,张钧萍,汪爱华.基于相关向量机的高光谱图像噪声评估算法[J].红外与激光工程,2014,43(12):4159-4163. 被引量:6
  • 10王文豪,高尚兵,周静波,严云洋.图像中椒盐噪声去除算法研究[J].数据采集与处理,2015,30(5):1091-1098. 被引量:5

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部