期刊文献+

SMA驱动变体机翼后缘结构连续偏转模糊控制方法研究

Research on fuzzy control method for continuous deflection of morphing wing trailing edge structures actuated by SMA
下载PDF
导出
摘要 针对基于形状记忆合金(Shape Memory Alloy,SMA)丝驱动的可连续变弯度机翼后缘结构,采用模糊控制方法对后缘上下偏转进行了精确控制。首先,在CATIA软件中建立了机翼结构的三维数模,各种零部件加工完成并装配调试后得到机翼模型;然后,根据流场气动载荷分析结果,选择了合适的SMA丝驱动器,满足后缘偏转的载荷要求;最后,设计并搭建了基于数据采集卡的测控系统,采用模糊控制方法对后缘偏转进行了空载、等效静态载荷和风洞载荷加载实验,实验结果表明了所设计的SMA驱动器可实现后缘结构±10°的连续偏转,稳态误差小于±0.6°,控制系统的超调量小于10%,初步实现了后缘偏转的精确控制。 In this paper, the fuzzy control method was used to precisely control the upper and lower deflection of the trailing edge of the morphing wing driven by shape memory alloy(SMA). Firstly, the three-dimensional numerical model of the wing structure was designed in CATIA software, and all the components and parts were manufactured,assembled and debugged. The wing model was obtained;Then, according to the aerodynamic load analysis results of the flow field, a suitable SMA actuators were selected to meet the load requirements of the trailing edge deflection;Finally, the measurement and control system based on the data acquisition card was designed and built. Fuzzy control method was used to control the trailing edge deflection. The no-load, equivalent static load and wind tunnel load experiments were carried out. The experimental results show that the SMA designed was feasible to drive the trailing edge structure of the wing with ± 10° continuous deflection. The steady-state error was less than ± 0. 6°, and the overshoot of the control system was less than 10%. The precise control of the trailing edge deflection is preliminarily realized.
作者 吴梦 徐志伟 Wu Meng;Xu Zhiwei(College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《无线互联科技》 2022年第22期112-120,共9页 Wireless Internet Technology
关键词 变体机翼 后缘襟副翼 形状记忆合金(SMA) 模糊控制方法 morphing wing trailing edge flap aileron shape memory alloy fuzzy control method
  • 相关文献

参考文献5

二级参考文献36

  • 1杨凯,辜承林.基于SMA智能复合棒的新型驱动器研究[J].华中科技大学学报(自然科学版),2005,33(3):78-80. 被引量:5
  • 2高滨.形状记忆合金在航天器分离机构上的应用[J].航天返回与遥感,2005,26(1):48-52. 被引量:26
  • 3GORINI S, QUIRINI M, MENCIASSI A. A novel SMA- based actuator for a legged endoscopic capsule [ C ]// Proceedings of the First IEEE/RAS - EMBS International Conference on Biomedical Robotics and Biomechatronics. Pisa, Italy : Institute of Electrical and Electronics Engineers Computer Society,2006 : 443 -449.
  • 4KANAKA K. Thermomechanical Description of Materials with Internal Variables in the Process of Phase Transformation [ J ]. Ingenious Archive, 1982, 52:287 - 299.
  • 5KOJI I, MASAHIRO T, SHIGEO H. Mathematical model and experimental verification of shape memory alloy for designing micro-actuator [ C ]//Proc IEEE Micro electromechanical System. Nara, Japan : IEEE Robotics & Automation Soc, 1991 : 103 - 108.
  • 6YU H, MA P, CAO C. A novel in-pipe worming robot based on SMA [ C ]// IEEE International Conference on Mechatronics and Automation. Niagara: Institute of Electrical and Electronics Engineers Computer Society, 2005 : 923 - 927.
  • 7MAJIMA S, KODAMA K, HASEGAWA T. Modeling of shape memory actuator and tracking control system with the model [ J ]. IEEE Transactions of Control System Technology, 2001, 9( 1): 54-59.
  • 8LIANG C, ROGERS C A. One - dimensional thermome- chanical constitutive relations for shape memory materials [ J ]. Journal of Intelligent Material Systems and Structure, 1990 ( 1 ) : 207 - 234.
  • 9Stanewsky E. Aerodynamic benefits of adaptive wing technology[J]. Aerospace Science Technology, 2000, 4 (7) : 439 -452.
  • 10Stanewsky E. Adaptive wing and flow control technology [J]. Progress in Aerospace Sciences, 2001, 37(7):583- 667.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部