期刊文献+

基于共享GPU的深度学习训练性能实证研究 被引量:3

AN EMPIRICAL STUDY ON TRAINING PERFORMANCE OF DEEP LEARNING BASED ON SHARED-GPU
下载PDF
导出
摘要 深度学习应用的训练过程是计算密集型的,它通常依靠图形处理单元(Graphics Processing Unit, GPU)来加速训练过程。然而深度学习开发框架往往会独占GPU,造成计算资源的浪费。针对该问题,该实证研究对两个深度学习应用共享GPU训练的可行性进行讨论,系统地分析了有代表性的深度学习模型的静态和运行时特性,展示了共享GPU训练两个模型时,不同的模型组合和特征对整体性能的影响。根据实验结果所总结的原则可以作为提高调度效率和改善GPU云资源利用率的指导方针。 The training process of deep learning(DL) application is computation-intensive. It often relies on Graphics Processing Unit(GPU) to accelerate the training process. However, DL frameworks tend to monopolize the GPU, resulting in a waste of computing resource. In view of the problem, this paper conducts an empirical study on exploring the feasibility of executing two DL applications on one shared-GPU. We systematically analyzed the static and runtime characters of several typical DL models, and showed the influence of different model combinations and characteristics on the overall performance when shared-GPU trained two models. The principles summarized from experimental results can serve as guidelines to improve the scheduling efficiency and the utilization of GPU cloud resources.
作者 徐涣霖 顾嘉臻 康昱 周扬帆 Xu Huanlin;Gu Jiazhen;Kang Yu;Zhou Yangfan(School of Computer Science,Fudan University,Shanghai 200433,China;Shanghai Key Laboratory of Intelligent Information Processing,Shanghai 200433,China;Microsoft Research Asia,Beijing 100080,China)
出处 《计算机应用与软件》 北大核心 2022年第12期152-158,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61702107)。
关键词 性能分析 GPU应用程序 深度学习 实证研究 Performance analysis GPU application Deep learning Empirical study
  • 相关文献

同被引文献24

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部