摘要
Ultra-dense low earth orbit(LEO)integrated satellite-terrestrial network(ULISTN)has become an emerging paradigm to support massive access of Internet of things(IoT)in beyond fifth generation mobile networks(B5G).In ULISTN,there are two communication modes:cellular mode and satellite mode,where IoT users assessing terrestrial small base stations(TSBSs)and terrestrial-satellite terminals(TSTs)respectively.However,how to optimize the network performance and guarantee self-interests of the operator and IoT users in ULISTN is a challenging issue.In this paper,we propose a cybertwin-assisted joint mode selection and dynamic pricing(JMSDP)scheme for effective network management in ULISTN,where cybertwin serves as the intelligent agent.In JMSDP,the operator determines optimal access prices of TSBSs and TSTs,while each user selects the access mode according to access prices.Specifically,the operator conducts the Stackelberg game aiming at maximizing average throughput depending on the mode selection results of IoT users.Meanwhile,IoT users as followers adopt the evolutionary game to choose an access mode based on the access prices provided by the operator.Simulation results show that the proposed JMSDP can improve the average throughput and reduce the delay effectively,comparing with random access(RA)and maximum rate access.
基金
This work was supported in part by the National Key R&D Program of China under Grant 2020YFB1806104
in part by the Natural Science Fund for Distinguished Young Scholars of Jiangsu Province under Grant BK20220067
in part by the Natural Science Foundation of China under Grant 62001259.