摘要
The Dual Synthetic Jet Actuator(DSJA) is used to develop a new type of lift enhancement device based on circulation control, and to control the flow over the two-dimensional(2D)NACA0015 airfoil. The lift enhancement device is composed of a DSJA and a rounded trailing edge(Coanda surface). The two outlets of the DSJA eject two jets(Jet 1 and Jet 2). Jet 1 ejects from the upper trailing edge, which increases the circulation of airfoil with the help of the Coanda surface. Jet2 ejects from the lower trailing edge, which acts as a virtual flap. The Reynolds number based on the airfoil chord length and free flow velocity is 250000. The results indicate that the circulation control method based on Dual Synthetic Jet(DSJ) has good performance in lift enhancement, whose control effect is closely related to momentum coefficient and reduced frequency. With the increase of the reduced frequency, the control effect of the lift enhancement is slightly reduced. As the momentum coefficient increases, the control effect becomes better. When the angle of attack is greater than 4°, the increments of lift coefficients under the control of DSJ are larger than those under the control of the steady blowing at a same momentum coefficient. The maximum lift augmentation efficiency can reach 47 when the momentum coefficient is 0.02, which is higher than the value in the case with steady blowing jet circulation control.
基金
co-supported by the National Natural Science Foundation of China(Nos.11972369 and 11872374)
the Youth Science and Technology Innovation Award funded project of National University of Defense Technology,China(434517314).