期刊文献+

选区激光熔化316L不锈钢残余应力优化研究 被引量:2

下载PDF
导出
摘要 利用人工神经网络的高度非线性函数逼近能力和自适应学习能力,建立选区激光熔化316L不锈钢成形残余应力预测模型。采用响应面法进行试验设计得到不同的工艺参数组合作为训练样本,通过残差分析验证样本数据的有效性,结合遗传算法对BP神经网络模型进行优化。结果表明,GA-BP神经网络模型的预测值与实际值的整体预测平均相对误差在5%左右,证明通过神经网络模型实现选区激光熔化316L不锈钢成形残余应力预测是可行的。 Using the highly nonlinear function approximation ability and adaptive learning ability of artificial neural network,a prediction model of residual stress in selective laser melting 316L stainless steel was established.The response surface method was used to design the experiment,and different process parameter combinations were obtained as training samples.The validity of the sample data was verified by residual analysis,and the BP neural network model was optimized with genetic algorithm.The results show that the overall average relative error between the predicted value of GA-BP neural network model and the actual value is about 5%,which proves that it is feasible to predict the residual stress of 316L stainless steel formed by selective laser melting through the neural network model.
出处 《科技创新与应用》 2023年第2期76-79,共4页 Technology Innovation and Application
基金 福建省中青年教师教育科研项目(科技类)(JAT201095) 福建省中青年教师教育科研项目(科技类)(JAT210727) 福建省增材制造创新中心开放基金(ZCZZ211-04) 福建信息职业技术学院院级科研课题(Y21101)。
关键词 选区激光熔化 神经网络 316L不锈钢 残余应力 Selective laser melting Neural network 316L stainless steel Residual stress
  • 相关文献

参考文献3

二级参考文献27

共引文献61

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部