期刊文献+

基于UPF算法的涡旋压缩机压缩气体的温度预测研究

Research on Temperature Prediction of Compressed Gas in Scroll Compressor Based on UPF Algorithm
下载PDF
导出
摘要 针对涡旋压缩机运行时腔体内气体温度变化的预测问题,提出一种基于粒子滤波(PF)算法的涡旋压缩腔内气体温度的预测方法。但是传统的PF算法存在粒子退化现象,使粒子集无法准确表示实际后验概率分布,导致预测精度降低。采用无迹卡尔曼滤波(UKF)算法改进PF算法的建议分布函数,抑制了粒子权重退化。通过推导计算压缩介质温度的数学模型,建立温度变化的状态方程,利用UKF算法、PF算法和改进后的无迹粒子滤波(UPF)算法对温度进行预测。预测结果表明UPF算法的预测估计误差平均差为2.74%,预测估计标准差为2.73%,其预测精度和稳定性远高于PF算法和UKF算法。 Aiming at the prediction of gas temperature change in scroll compressor chamber during operation, a prediction method based on particle filter(PF)algorithm was proposed.However, the traditional PF algorithm has particle degradation, which makes the particle set unable to accurately represent the actual posteriori probability distribution, resulting in reduced prediction accuracy.In this paper, the unscented Kalman filter(UKF)algorithm is used to improve the proposed distribution function of PF algorithm and suppress the particle weight degradation.By deducing the mathematical model to calculate the temperature of compression medium, the state equation of temperature change is established, and the temperature is predicted by UKF algorithm, PF algorithm and the improved undetected particle filter(UPF)algorithm.The prediction results show that the UPF algorithm has an average error of 2.74% and a standard deviation of 2.73%,and its prediction accuracy and stability are much higher than PF algorithm and UKF algorithm.
作者 李超 魏宁 刘忠良 LI Chao;WEI Ning;LIU Zhong-liang(College of Petrochemical Technology,Lanzhou University of Technology,Lanzhou 730050,China)
出处 《压缩机技术》 2022年第6期9-13,共5页 Compressor Technology
基金 国家自然科学基金(No.51976154)。
关键词 涡旋压缩机 温度 粒子滤波 卡尔曼滤波 性能预测 scroll compressor temperature particle filter Kalman filter performance prediction
  • 相关文献

参考文献5

二级参考文献46

  • 1房师毅,李连生,束鹏程,杨传波.无油润滑涡旋式空气压缩机的工作过程研究[J].中国机械工程,2005,16(2):123-127. 被引量:15
  • 2李海生,彭斌,刘振全,王作洪.无油润滑涡旋压缩机冷却系统的研究[J].兰州理工大学学报,2006,32(2):55-57. 被引量:9
  • 3Ding Ning,Cai Wei,Suo Juan,et al.Voltage sag disturbance detection based on RMS voltage method[C]// Power and Energy Engineering Conference.Wuhan:IEEE,2009:1-4.
  • 4Singh S K,Goswami A K,Sinha N.Power system harmonic parameter estimation using bilinear recursive least square (BRLS) algorithm[J].International Journal of Electrical Power and Energy Systems,2015,67:1-10.
  • 5Routray A,Pradhan A K,Rao K P.A novel Kalman filter for frequency estimation of distorted signals in power systems[J].IEEE Transactions on Instrumentation and Measurement,2002,51(3):469-479.
  • 6Reza M S,Ciobotaru M,Agelidis V G,et al.Instantaneous power quality analysis using frequency adaptive Kalman filter technique[C]// The 7th International Power Electronics and Motion Control Conference.Harbin,China:IEEE,2012:81-87.
  • 7Julier S J,Uhlmann J K.Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE,2004,92(3):401-422.
  • 8López R A,Yuz J I,Creixell W U,et al.Recursive parameter and state estimation for a mining industry process[C]// The 20th Mediterranean Conference on Control & Automation (MED).Barcelona,Spain:IEEE,2012:30-35.
  • 9Ray P K,Subudhi B.Ensemble Kalman filter based power system harmonic estimation[J].IEEE Transactions on instrumentation and measurement,2012,61(12):3216-3124.
  • 10Tian Lei,Rong Jian,Zhong Xiaochun,et al.UPF algorithm and its application in the GPS/INS integrated navigation[C]// International Conference on Wireless Communications and Signal Processing.Nanjing,China:IEEE,2009:1-4.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部