期刊文献+

Hilbert空间中K-g-框架的性质及扰动

Properties and Perturbations of K-g-frames in Hilbert Space
原文传递
导出
摘要 Hilbert空间中的K-g-框架作为g-框架的一种特殊推广,是周燕(2014)在研究g-框架的性质及扰动时提出的.在已有文献的基础上,改变了原有条件和框架中元素的域,给出了Hilbert空间中K-g-框架的一个充分条件和一个必要条件,然后得到了一个框架界为‖T‖^(-2)‖K‖^(-2)和B的K-g-框架的充要条件.最后证明了K-g-框架在简化后的扰动条件下的稳定性. The K-g-frame,which is a generalization of a g-frame in a Hilbert space,was introduced by Zhou Yan to study properties and perturbations of g-frame.Based on the existing papers,the original conditions and the domain of elements in the frame are changed.This paper gives a sufficient condition and a necessary condition of K-g-frame in Hilbert space,then we obtain a necessary and sufficient condition for a K-g-frame whose frame bounds are‖T‖^(-2)‖K‖^(-2)and B.Finally,the stability of K-g-frame under simplified perturbation conditions is proved.
作者 常强强 张建平 CHANG Qiang-qiang;ZHANG Jian-ping(College of Mathematics and Computer Science,Yan'an University,Yan'an 716000,China)
出处 《数学的实践与认识》 2022年第12期224-229,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(11961072) 陕西省自然科学基础研究计划项目(2020JM-547)。
关键词 G-框架 K-g-框架 扰动 稳定性 g-frame K-g-frame perturbation stability
  • 相关文献

参考文献8

二级参考文献40

  • 1傅元康,朱玉灿.K-框架的自然K-对偶Bessel序列[J].中国科学:数学,2020,50(2):287-300. 被引量:2
  • 2Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72, 341-366 (1952)
  • 3Casazza, P. G.: The art of frame theory. Taiwan Residents J. of Math., 4(2), 129-201 (2000)
  • 4Christensen, O.: An Introduction to Prames and Riesz Bases, Birkhauser, Boston, 2003
  • 5Christensen, O.: Frames, Riesz bases, and discrete Gabor/wavelet expansions. Bull. Amer. Math. Soc., 38(3), 273-291 (2001)
  • 6Yang, D. Y., Zhou, X. W., Yuan, Z. Z.: Frame wavelets with compact supports for L2(Rn). Acta Mathernatica Sinica, English Series, 23(2), 349-356 (2007)
  • 7Li, Y. Z.: A class of bidimensional FMRA wavelet frames. Acta Mathematica Sinica, English Series, 22(4), 1051-1062 (2006)
  • 8Zhu, Y. C.: q-Besselian frames in Banach spaces. Acta Mathematica Sinica, English Series, 23(9), 1707- 1718 (2007)
  • 9Li, C. Y., Cao, H. X.: Xd frames and Reisz bases for a Banach space. Acta Mathematica Sinica, Chinese Series, 49(6), 1361-1366 (2006)
  • 10Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl., 322(1), 437-452 (2006)

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部