期刊文献+

几种均值之间的比较及应用

Comparisons of Several Kinds of Mean Values and Their Applications
原文传递
导出
摘要 设a和b为两个正实数,对基本不等式2/(1/a+1/b)≤√ab≤a+b/2≤((a^(2)+b^(2))/2)^(1/2)(当且仅当a=b时取等号)作各种加权平均、r-幂离散型及连续型平均的推广,并给出其r-幂平均关于r的单调非减性证明.特别地,分别给出了调和平均、积分平均在实际问题和重要不等式中的应用. Let a and b be two positive real numbers.We extend the basic inequality:2/(1/a+1/b)≤√ab≤a+b/2≤((a^(2)+b^(2))/2)^(1/2)(by taking"="if and only if a=b)to the weighted averages,and the r-power averages for discrete and continuous settings.The increasing monotonicity of the r-th power average for discrete and continuous cases with respect to the independent variable r is proved,respectively.In particular,the applications of harmonic average and integral average to various practical problems and important inequalities are presented,respectively.
作者 王桂云 WANG Gui-yun(Mathematics Teaching and Research Group,Zhejiang Institute of Communications,Hangzhou 311112,China)
出处 《数学的实践与认识》 2022年第12期259-266,共8页 Mathematics in Practice and Theory
关键词 调和平均 离散及连续型的r-幂平均 加权平均 r-幂平均的单调性 harmonic average r-th power average for discrete and continuous cases weighted average monotonicity of the r-th power average
  • 相关文献

参考文献5

二级参考文献35

  • 1刘崇林.再谈用好均值不等式[J].数学教学通讯(中教版),2005,28(10S):47-48. 被引量:1
  • 2Alzer H. A power mean inequality for the gamma function. Monatsh Math, 2000, 131(3): 179-188.
  • 3Alzer H. Ungleichungen fiir Mittelwerte. Arch Math, 1986, 47(5): 422-426.
  • 4Alzer H. Ungleichungen f/Jr (e/a)^a(b/e)^b. Elem Math, 1985, 40:120- 123.
  • 5Alzer H, Janous W. Solution of problem 8^*. Crux Math, 1987, 13:173 -178.
  • 6Alzer H, Qiu S L. Inequalities for means in two variables. Arch Math, 2003, 80(2): 201-215.
  • 7Bullen P S, Mitrinovic D S, Vasic P M. Means and Their Inequalities. Dordrecht: D Reidel Publishing Co, 1988.
  • 8Burk F. The geometric, logarithmic, and arithmetic mean inequalities. Amer Math Monthly, 1987, 94(6): 527-528.
  • 9Carlson B C. The logarithmic mean. Amer Math Monthly, 1972, 79:615-618.
  • 10Chu Y M, Xia W F. Two sharp inequalities for power mean, geometric mean, and harmonic mean. J Inequal Appl, 2009:741923.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部