期刊文献+

基于得分驱动模型的广东和湖北两省碳排放权交易市场波动特征研究

Research on Fluctuation Characteristics of Carbon Emissions Trading Markets in Guangdong and Hubei Provinces Based on Score-Driven Model
原文传递
导出
摘要 现有关于碳排放权价格波动特征方面的研究多采用GARCH族模型,但是常见GARCH模型中方差是关于过去收益率平方的线性模型,这使得方差对于极端数值往往响应过度且这样效应存续时间较长.针对这一问题,Harvey和Harvey&Sucarrat提出了得分驱动的模型构建思路.采用得分驱动的模型构建思路,利用Beta-skew t-EGARCH模型对广东和湖北两省碳排放权交易市场波动进行研究.使用单组分、双组分Beta-skew t-EGARCH模型和常用EGARCH模型对两组碳排放权收益率序列进行拟合,极大似然估计值和BIC值均表明单组分Beta-skew t-EGARCH模型的拟合效果更好. Existing studies on the price fluctuation characteristics of carbon emission rights mostly use the GARCH family model,but the variance in the common GARCH model is a linear model about the square of the past return,which makes the variance often over-response to extreme values and this effect lasts for a long time.In response to this problem,Harvey and Harvey&Sucarrat proposed a score-driven model construction idea.This paper adopts the idea of scoring-driven model construction,and uses the Beta-skew t-EGARCH model to study the fluctuation of carbon emission trading market in Guangdong and Hubei provinces.The single-component,two-component Beta-skew t-EGARCH model and the commonly used EGARCH model are used to fit the carbon emission right yield series.The maximum likelihood estimates and BIC values both indicate the single-component Beta-skew t-EGARCH The fitting effect of the model is better.
作者 姚鼎 帅安琪 杨爱军 YAO Ding;SHUAI An-qi;YANG Ai-jun(College of Economics and Management,Nanjing Forestry University,Nanjing 210037,China;College of Economics and Management,Jiangsu Vocational College of Tourism,Yangzhou 225000,China)
出处 《数学的实践与认识》 2022年第12期267-274,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(11971235) 江苏省青蓝工程项目(2020)。
关键词 碳排放权 波动特征 得分驱动模型 Beta-skew t-EGARCH模型 carbon emission rights fluctuation characteristics score-driven model Beta-skew t-EGARCH model
  • 相关文献

二级参考文献40

  • 1幸宇.构建纳入林业碳汇的碳排放权市场的设想[J].西南金融,2013(10):37-40. 被引量:6
  • 2Alberola E. ,Chevalier J. ,Cheze B. Price drivers and structural breaks in european carbon prices 2005- 2007 [J]. Energy Policy, 2008(39) : 787-797.
  • 3Sonia Labatt and Rodney R. White. Carbon Finance: The financial implications of climate change[M]. John Wiley & Sons,Inc,2007.
  • 4Engle,Robert. F, Autoregressive conditional heteroskedasticity with estimates of the variance of U. K. inflation[J]. Econometrica ,1982,(50):987-1008.
  • 5Bollerslev T. , Generalized autoregressive conditional heteroskedasticity[J]. Journal of Economics , 1986, ( 31 ) : 307 - 327.
  • 6Christiansen A.C., Arvanitakis A., Tangen K. & Has- selknippe H. 2005. Price determinants in the EU emissions trading scheme.[J].Climate Policy, 5.
  • 7Maria Mansanet Bataller, Angel Pardo Tornero & Enric Valor i Mico. 2007. CO2 Prices, Energy and Weather [J].The Energy Journal, 28.
  • 8Emilie Alberola, Julien Chevallier & Benoit Cheze. 2008. Price drivers and structural breaks in European carbon prices 2005-2007[J].Energy Policy, 36.
  • 9Derek Bunn & Carlo Fezzi. 2007. Interaction of Eu- ropean Carbon Trading and Energy Prices [J].Journal of En- ery Markets, 2.
  • 10Delarue E. D. & D' haeseleer W. D. 2007. Price de- termination of ETS allowances through switching level of coal and gas in the power sector[J].International Journal of Energy Research.

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部