期刊文献+

进化P-Laplacian方程稳态解的存在性及估计

Existence and Estimation of Steady-State Solutions of Evolutionary Equations
原文传递
导出
摘要 主要运用山路引理证明了进化P-Laplacian方程稳态解的存在性,以及对方程中■u/■t作了一些估计. The mountain path theorem is mainly used to prove the existence of the solution of the steady-state equation of the evolution equation and Some estimates.
作者 马宝 许敏 王玉文 MA Bao;XU Min;WANG Yu-wen(Department of Basic Education,Inner Mongolia National Inant Normal College,Ordos 017000,China;Pharmacy Department,Ordos Central Hospital,Ordos 017000,China;School of Mathematical Sciences,Harbin Normal University,Harbin 150000,China)
出处 《数学的实践与认识》 2022年第12期275-278,共4页 Mathematics in Practice and Theory
关键词 稳态方程 山路引理 估计 steady state equation mountain path theorem estimation
  • 相关文献

参考文献3

二级参考文献21

  • 1Filo J. Diffusivity versus absorption through the boundary. J Diff Eqns, 1992, 99:281-305.
  • 2Levine H A, Payne L E. Nonexistence theorems for the heat equation with nonlinear boundary conditions and for porous medium equation backward in time. J Diff Eqns, 1974, 16:319-334.
  • 3Fujita H. On the blowing up of solutions to the cauchy problems for ut = Δu + u^1+α. J Fac Sci Univ Tokyo Sect IA Math, 1996, 13:109-124.
  • 4Deng K. The role of critical exponents in blow-up theorems: the sequel. J Math Anal Appl, 2000, 243: 85-126.
  • 5Quires F, Rossi J D. Blow-up sets and fujita type curves for a degenerate parabolic system with nonlinear boundary conditions. Indiana Univ Math J, 2001, 50:629 654.
  • 6Jin C H, Yin J X. Critical exponents and non-extinction for a fast diffusive polytropic filtration equation with nonlinear boundary sources. Nonlin Anal, 2007, 67:2217 2223.
  • 7Pablo A D, Quirds F, Rossi J D. Asymptotic simplification for a reaction-liffusion problem with a nonlinear boundary condition. IMA J Appl Math, 2002, 67:69 98.
  • 8Song X F, Zheng S N. Blow-up and blow-up rate for a reaction diffusion model with multiple nonlinearities. Nonlin Anal, 2003, 54:279- 289.
  • 9Jiang Z X, Zheng S N, Song X F. Blow-up analysis for a nonlinear diffusion equation with nonlinear boundary conditions. Appl Math Lett, 2004, 17:193 -199.
  • 10Andreu F, Mazen J M, Toledo J, Rossi J D. Porous medium equation with absorption and a nonlinear boundary condition. Nonlin Anal, 2002, 49:541 -563.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部