期刊文献+

纳米材料与环境抗生素耐药性:抗性基因流在土壤-植物系统中的迁移与阻断 被引量:5

Nanomaterials and environmental antimicrobial resistance:Propagation and inhibition of antibiotic resistance gene flow in the soil-plant system
原文传递
导出
摘要 抗生素抗性基因(antibiotic resistance genes,ARGs)作为一种新兴污染物正威胁着全球卫生健康,应对抗生素耐药性(antimicrobial resistance,AMR)已成为一项全球性挑战.粪源性ARGs是农业土壤AMR的主要来源,可通过水平基因转移(horizontal gene transfer,HGT)在土壤-植物系统中迅速传播最终进入食物链,威胁人类健康.人工合成纳米材料(engineered nanomaterials,ENMs)和微纳塑料的大规模生产与应用使得环境中ENMs和微纳塑料的浓度持续增加,最终进入环境对土壤-植物系统中ARGs的迁移与传播产生不可忽视的影响.ENMs(如AgENMs、CuO ENMs和TiO2/Ag/GO ENMs等)可通过积累胞内活性氧(reactive oxygen species,ROS)、增加细胞膜透性和上调接合相关基因表达促进ARGs的传播.此外,土壤中的ENMs与微纳塑料可影响土壤微生物抗性组和植物根部形态、结构及根系分泌物等,进而影响抗生素抗性细菌(antibiotic resistance bacteria,ARB)和ARGs从根际向植物的迁移.另有报道显示,CeO2ENMs、Fe2O3@MoS2ENMs和微塑料(microplastics,MPs)具有清除胞内ROS或抑制根系生长控制ARGs传播的潜力.本文将系统阐明ENMs和微纳塑料影响ARGs传播的潜在分子机制,聚焦ARGs在土壤-植物系统中迁移并影响微生物抗性组的微界面过程,探讨阻断抗性基因流迁移的新兴纳米技术,对遏制AMR传播、保障粮食安全与人体健康具有重要意义. The propagation of antibiotic resistance genes (ARGs),one of the emerging contaminants threatening global sanitation and health,has called for the necessity to overcome the spread of antimicrobial resistance (AMR).ARGs derived from manure is the main source of AMR in agricultural soil that can be propagated rapidly in soil-plant system and finally into food chain via horizontal gene transfer (HGT),which mainly includes three pathways mediated by mobile genetic elements (MGEs),namely,plasmid-mediated conjugation,extracellular DNA-mediated transformation,and phage-mediated transduction.The massive production and wide application of engineered nanomaterials (ENMs) and micro(nano) plastics have resulted in increasing concentrations of ENMs and micro(nano) plastics in the environment,which will eventually enter the soil and lead to migration and propagation of ARGs in soil-plant system.Bacterial pure culture studies reported that ENMs can exacerbate the dissemination of ARGs via changing intracellular reactive oxygen species (ROS),cell membrane permeability,and expression of genes related to conjugation.Moreover,ENMs and micro(nano) plastics in soil can change the soil antibiotic resistome and plant root morphology,structure and root exudates,which may affect the migration of ARB and ARGs from the rhizosphere to plants.The interactions between ENMs/micro(nano) plastics and ARGs might drive the development of multidrug resistance in soil-plant system.Although research targeting the effects of ENMs/micro(nano)plastics on the fate of ARGs is growing,an overview of biological impact and related mechanism is somehow lacking.In this review article,we systematically reviewed the interaction between ENMs/micro(nano) plastics and ARGs,especially in soil-plant system and attempted to explore the possibilities of nanotechnology to inhibit the transfer of antibiotic resistance gene flow.This review mainly covers:(1) Molecular mechanisms of ENMs and micro(nano) plastics regulating ARGs propagation.ENMs (i.e.,Ag ENMs,CuO ENMs,TiO2/Ag/GO ENMs and nano-graphene oxide) can promote ARGs propagation by accumulating intracellular reactive oxygen species (ROS),increasing cell membrane permeability and up-regulating of conjugation-related gene expression.However,CeO2ENMs and Fe2O3@MoS2ENMs have the potential to inhibit the propagation of ARGs via ROS elimination and down-regulating expression of HGT-related genes.(2) Influence of ENMs/micro(nano) plastics on ARGs in soil-plant system.ENMs/micro(nano) plastics can alter soil bacterial community and affect plant growth which will likely reduce the horizontal transfer of ARGs in soil by inhibiting the growth of soil microorganisms,reducing the abundance and diversity of ARB in soil,or changing the amount and composition of root exudates.(3) Application of nanotechnology on inhibiting antibiotic resistance gene flow.The regulatory mechanisms of nanotechnology on ARGs can be classified as:Inhibition of HGT,change of bacterial community composition,adsorption/degradation on ARGs and antimicrobial performance.Nanotechnology is promising for eliminating ARGs with high accuracy while its high cost and instability remain to be solved.For future study,more attention should be paid on the management of antibiotics,ARB and ARGs,and the establishment of AMR risk assessment system to comprehensively assess the potential risk of AMR propagation via soil-plant-human pathways.Besides,the propagation of ARGs regulated by ENMs might be a challenge to distinguish and balance the advantages and disadvantages of ENMs in soil-plant system.Thus,it is urgent to comprehensively and systematically assess the environmental behavior and ecological risks of ENMs and micro(nano) plastics,contributing to the safe and efficient nano-based reduction of AMR.
作者 陈菲然 许一诺 杜昊 吴晖东 王茜 曾健雄 王震宇 Feiran Chen;Yinuo Xu;Hao Du;Huidong Wu;Xi Wang;Jianxiong Zeng;Zhenyu Wang(Institute of Environmental Processes and Pollution Control,School of Environmental and Civil Engineering,Jiangnan University,Wuxi 214122,China)
出处 《科学通报》 EI CAS CSCD 北大核心 2022年第35期4206-4223,共18页 Chinese Science Bulletin
基金 国家自然科学基金国际合作与交流项目(41820104009) 国家自然科学基金重大项目(42192572) 江苏省自然科学基金(BK20190618)资助。
关键词 抗生素抗性基因(ARGs) 人工合成纳米材料(ENMs) 微纳塑料 土壤-植物系统 传播与阻断 antibiotic resistance genes(ARGs) engineered nanomaterials(ENMs) micro/nano plastics soil-plant system propagation and inhibition
  • 相关文献

参考文献3

二级参考文献64

  • 1白茹,王雯,金星龙,宋文华.纳米材料生物安全性研究进展[J].环境与健康杂志,2007,24(1):59-61. 被引量:15
  • 2Allen N S, Edge M, Sandoval G, et al. Photocatalytic coatings for environmental applications[ J]. Photochem Photobiol, 2005, 81 (2) :279-290.
  • 3Wolf R, Matz H, Orion E, et al. Sunscreens-the ultimate cosmetic [ J ]. Acta Dermatovenerol Croat, 2003, 11 ( 3 ) : 158-162.
  • 4Cai R, Kubota Y, Shuin T, et al. Induction of cytotoxicity by photoexeited TiO2 particles [ J ]. Cancer Res, 1992, 52: 2346 -2348.
  • 5Srinivasan C. Toxicity of carbon nanotubes-some recent studies [J]. CurrSci, 2008, 95(3) :307-308.
  • 6Lee W M, An Y J, Yoon H. Toxicity and bioavailability of copper nanoparticles to the terrestrial plant mung bean ( Phaseolus radiatus) and wheat (Triticum aestivum):plant agar test for water-insoluble nanoparticles[J]. Environ Toxicol Chem, 2008, 27(9) :1915-1921.
  • 7Lin D H, Xing B S. Root uptake and phytotoxicity of ZnO nanoparticles [ J ]. Envion Sci Technol, 2008, 42 ( 15 ) : 5580-5585.
  • 8Zhu H, Han J, John Q, et al. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants[ J]. J Environ Monit, 2008, 10(6) :713-717.
  • 9Yang L, Watts D J. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles [ J ]. Toxicol Lett, 2005, 158 : 122-132.
  • 10Lin D H, Xing B S. Phytotoxicity of nanoparticles:Inhibition of seed germination and root growth [ J ]. Environ Pollut, 2007, 150:243-250.

共引文献36

同被引文献35

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部