摘要
主要研究了涉及差分多项式的亚纯函数的唯一性问题.假设f(z)为超级小于1的非常数亚纯函数,M(f)=∑pi=0αif(z+iη)是f(z)的一类差分多项式,其中η(≠0),p,α0,α1,…,αp(≠0)均为常数且α0+α1+…+αp=0.若f(z)与M(f)CM分担2个值且IM分担1个值,则f(z)≡M(f).
In this paper,we prove a uniqueness theorem of meromorphic functions concerning difference polynomials.Suppose that f(z)is a non-constant meromorphic function of hyper order less than 1 and M(f)=∑pi=0αif(z+iη) is a difference polynomial of f(z),where η(≠0),p,α0,α1,…,αp(≠0) are constants and α0+α1+…+αp=0.If f(z)and M(f)share two values CM and share one value IM,then f(z)≡M(f).
作者
冯妍妍
林鸿金
许爱珠
FENG Yan-yan;LIN Hong-jin;XU Ai-zhu(School of Mathematics and Statistics,Fujian Normal University,Fuzhou,Fujian 350117,China;College of Mathematics and Physics,Ningde Normal University,Ningde,Fujian 352100,China)
出处
《宁德师范学院学报(自然科学版)》
2022年第4期347-353,共7页
Journal of Ningde Normal University(Natural Science)
基金
国家自然科学基金项目(11801291)
宁德师范学院科研创新团队(2019T01)
宁德师范学院科研人才引进项目(2020Y03)。
关键词
亚纯函数
位移
差分多项式
分担值
唯一性
meromorphic functions
shifts
difference polynomials
shared values
uniqueness