期刊文献+

Improvement on the Mechanical Performance and Resistance Towards Hydrolysis of Poly(glycolic acid)via Solid-state Drawing 被引量:1

原文传递
导出
摘要 Poly(glycolic acid)is a biocompatible as well as biocomposable polymer with superior mechanical and barrier properties and,consequently,has found important applications in both medical and packaging fields.However,the high hydrolysis rate in a high humidity environment restricts its application.In this work,a solid-state drawing process after melt extrusion is applied in order to produce fibrous PGA with enhanced mechanical properties and a much better resistance towards hydrolysis.The crystal structure of PGA gradually transformed from spherulites into oriented fibrous crystals in the stretching direction upon solid-state drawing.Meanwhile,both the length of microfibril and the size of lamellae increased initially with the drawing ratio(DR),while the chain-folded lamellae transformed into extended-chain fibrils at high(er)DR.The oriented structures lead to an overall improvement of the mechanical properties of PGA,e.g.,the tensile strength increased from 62.0±1.4 MPa to 910±54 MPa and the elongation at break increased from around 7%to 50%.Meanwhile,the heat capacity of totally mobile amorphous PGA(∆C_(p)^(0)=0.64 J·g^(−1)·℃^(−1))was reported for the first time,which was used to analyze the content of mobile amorphous fraction(XMAF)and rigid amorphous fraction(XRAF).Both the oriented chain-folded lamellae crystals and the tightly arranged RAF are beneficial to prevent water molecules from penetrating the matrix,thus improving the resistance towards hydrolysis.As a consequence,the fibrous PGA with a DR of 5 showed a tensile strength retention rate of 17.3%higher in comparison with the undrawn sample after 7-days accelerated hydrolysis.Therefore,this work provides a feasible method to improve the mechanical and resistance towards hydrolysis performance of PGA,which may broaden its application and prolong the shelf-life of PGA products.
出处 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第1期14-23,共10页 高分子科学(英文版)
基金 the National Natural Science Foundation of China(Nos.52073123 and 51873082) the Distinguished Young Natural Science Foundation of Jiangsu Province(No.BK20200027)。
  • 相关文献

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部