期刊文献+

基于压缩感知的贪婪类重构算法原子识别策略综述 被引量:5

A Review of Atom Recognition Strategies for Greedy Class Reconstruction Algorithms Based on Compressed Sensing
下载PDF
导出
摘要 在压缩感知(CS)重构算法中,贪婪类算法因其硬件实现的简易性与良好的恢复精度得到了广泛研究,但算法多样化的同时出现了算法选择困难的问题。原子识别策略作为贪婪类算法的核心,其差异往往决定了算法重构性能的优劣。该文以贪婪类算法最关键的一环原子识别作为研究对象,对贪婪类重构算法的原子识别策略进行了提取与分类。根据不同策略的适用阶段和特点归纳提炼出3种一步式原子识别策略、8种进阶式原子识别策略以及3种稀疏度自适应原子识别策略。最后对原子识别策略所对应原始算法的重构性能进行了分类仿真对比。整理后的策略方便于实际应用中对算法的选择,同时为贪婪类重构算法的进一步优化提供了参考。 Among the Compressed Sensing(CS) reconstruction algorithms, greedy algorithm has been widely studied for its simple hardware implementation and excellent recovery accuracy. However, the diversity of algorithms also presents the problem of difficult algorithm selection. As the core of greedy algorithms, the difference of atomic recognition strategy often determines its recovery performance. In this paper, atomic recognition strategy, which is the most important part of greedy algorithm, is taken as the research object.Three one-step atom recognition strategies, eight advanced atom recognition strategies and three sparsity adaptive atom recognition strategies are summarized according to the applicable stages and characteristics.Finally, the recovery performance of the original algorithms corresponding to the atomic recognition strategies are simulated and compared. The sorted strategies are convenient for the selection of algorithms in practical application, and they provide references for the further optimization of greedy algorithms.
作者 刘素娟 崔程凯 郑丽丽 江书阳 LIU Sujuan;CUI Chengkai;ZHENG Lili;JIANG Shuyang(College of Microelectronics,Beijing University of Technology,Beijing 100124,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2023年第1期361-370,共10页 Journal of Electronics & Information Technology
基金 国家自然科学基金(62074010) 北京市教委科技项目(KM201810005022)。
关键词 压缩感知 贪婪类重构算法 原子识别策略 Compressed Sensing(CS) Greedy class recovery algorithms Atom recognition strategy
  • 相关文献

参考文献4

二级参考文献43

  • 1E J Candes,T Tao.Decoding by linear programming[J]. IEEE Trans Info Theory,2005,51(12):4203-4215.
  • 2E J Candes,J Romberg,T Tao.Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans Info Theory,2006, 52(2):489-509.
  • 3E J Candes,T Tao.Near optimal signal recovery from random projections:Universal encoding strategies[J].IEEE Trans Info Theory,2006,52(12):5406-5425.
  • 4D L Donoho.Compressed sensing[J].IEEE Trans Info Theory,2006,52(4):1289-1306.
  • 5S S Chen,D L Donoho,M A Saunders.Atomic decomposition by basis pursuit[J].SIAM Rev,2001,43(1): 129-159.
  • 6J A Tropp,A C Gillbert.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans Info Theory,2007,53(12):4655-4666.
  • 7D L Donoho,Y Tsaig,I Drori,etc.Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit[C].Tech.Report,Stanford,Department of Statistics,2006.
  • 8D Needell,R Vershynin.Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [J].Found.Comput.Math,2009,9(3):317-334.
  • 9D Needell,J A Tropp.CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[J].Applied and Computation Harmonic Analysis,2009,26:301-321.
  • 10W Dai,0 Milenkovic.Subspace pursuit for compressive sensing signal reconstruction[C].2008 5th International Symposium on Turbo Codes and Related Topics,2008, 402-407.

共引文献51

同被引文献41

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部