期刊文献+

AgO分子激发态光谱性质的理论研究

Theoretical study on spectral properties of AgO molecular excited states
下载PDF
导出
摘要 使用高精度多参考组态相互作用(MRCI)方法,计算了AgO分子能量最低的3条解离极限的全部19个Λ-S态的能量.计算过程中考虑了戴维森校正、芯-价电子关联效应以及自旋轨道耦合效应.根据计算结果绘制了AgO分子的势能曲线(PECs),并求解一维核运动的Sch?rdinger方程得到束缚态的光谱常数,计算结果与实验结果吻合较好.计算了17个Λ-S态的电偶极矩(DMs)随着核间距的变化规律.借助于1^(2)Σ^(+)与1^(2)Σ^(-),22Π,1^(4)Σ^(-),1^(4)Π态之间的自旋轨道耦合矩阵元的绝对值对1^(2)Σ^(+)态的扰动进行讨论.计算AgO分子低激发态之间的跃迁性质,包括跃迁偶极矩(TDMs)和弗兰克-康登因子(FCFs)以及辐射寿命. The energies of 19Λ-S states with the three lowest dissociation limits of AgO are calculated by using the high-level MRCI method.Davidson correction,core-valence electron correlation effect and spin-orbit coupling effect are considered in the calculation.According to the calculated results,the potential energy curves(PECs)of AgO are plotted,and the spectroscopic constants of bound states are obtained by solving the Sch?rdinger equation of one-dimensional nuclear motion.The calculated results are in good agreement with the experimental results.The variation of the electric dipole moments(DMs)of 17Λ-S states with the internuclear distance is calculated.The perturbation of the1^(2)Σ^(+)state is discussed by means of the absolute values of the spin-orbit coupling matrix elements of 1^(2)Σ^(+)-1^(2)Σ^(-),1^(2)Σ^(+)-2~2Π,1^(2)Σ^(+)-1^(4)Σ^(-)and1^(2)Σ^(+)-1^(4)Π.The transition properties between low excited states of AgO are calculated,including transition dipole moments(TDMs),Frank-Condon factors(FCFs)and radiation lifetimes.
作者 杨吉修 宋铭彤 桑纪群 艾瑞波 张韬 刘晓华 李奇楠 李瑞 YANG Jixiu;SONG Mingtong;SANG Jiqun;AI Ruibo;ZHANG Tao;LIU Xiaohua;LI Qinan;LI Rui(School of Science,Qiqihar University,Qiqihar 161006,China)
出处 《高师理科学刊》 2022年第12期44-50,共7页 Journal of Science of Teachers'College and University
基金 黑龙江省平台开放课题(DWCGQKF202104) 黑龙江省省属高等学校基本科研业务费科研项目(145109127) 齐齐哈尔大学研究生创新科研项目(YJSCX2021018)。
关键词 AGO 势能曲线 光谱常数 Λ-S态跃迁性质 AgO potential energy curve spectroscopic constant transition property ofΛ-S
  • 相关文献

参考文献4

二级参考文献44

  • 1江文世,吴开映.LiH, BeH和BH基态分子结构与势能函数[J].四川师范大学学报(自然科学版),2005,28(4):469-471. 被引量:25
  • 2Grandcolas M, Ye J, Hanagata N. Mater. Lett., 2011,65:236- 239.
  • 3SHEN Wen-Ning, FENG La-Jun, KONG Zhen-Zhen, et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2009,26(9):1577-1582.
  • 4Kibis L S, Stadnichenko A I, Pajetnov E M, et al. Appl. Surf.. Sci., 2010,257:404-413.
  • 5Dellasega D, Facibeni A, Di Fonzo F, et al. Appl. Su(f.. Sci., 2009,255:5248-5251.
  • 6Lee H J, Yeo S Y, Jeong S H. J. Mater. Sci., 2003,38:2199-.
  • 7Waterhouse G I N, Metson J B, Bowmaker G A. Polyhedron, 2007,26:3310-3322.
  • 8Antelman M S, Rehovot I. US Patent, 5211855. 1993-05-18.
  • 9XIAO Xue-Song, ZHOU Guo-Guang, LI Qian, et al. Shanghai Chem. Ind.(Shanghai Huagong), 2006,31(2):620-625.
  • 10CHEN Kang, LI Qian, JIAO Li-Li, et al. J. East China Univ. Sci. Technol.: Nat. Sci. Ed.(Huadong Ligong Daxue Xuebao: Ziran Kexue Ban), 2008,34(1):86-90.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部