期刊文献+

Effects of N-acetylcysteine on growth,viability and reactive oxygen species levels in small antral follicles cultured in vitro

下载PDF
导出
摘要 Objective:To investigate the effects of different concentrations of N-acetylcysteine on follicular growth and morphology,as well as on viability,levels of reactive oxygen species(ROS)and meiotic progression of oocytes from in vitro cultured bovine early antral follicles.Methods:Isolated early antral follicles(about 500μm)were cultured in TCM-199+alone or supplemented with 1.0,5.0 or 25.0 mM N-acetylcysteine at 38.5℃with 5%CO_(2) for 8 days.Follicle diameters were evaluated at day 0,4 and 8 of culture.At the end of culture,the levels of ROS,chromatin configuration and viability(calcein-AM and ethidium homodimer-1 staining)were investigated in the cumulus-oocyte complexes.Comparisons of follicle diameters between treatments were performed.Data on percentages of morphologically normal follicles,growth rates and chromatin configuration in different treatments were compared.Results:An increase in follicular diameters after culture in all treatments was observed,except for follicles cultured with 25.0 mM N-acetylcysteine.Fluorescence microscopy showed that oocytes cultured in all treatments were stained positively with calcein AM,and that 5.0 mM N-acetylcysteine reduced fluorescence for ethidium homodimer-1.Intracellular levels of ROS in oocytes from follicles cultured with 1.0 mM N-acetylcysteine showed a significant reduction compared to other treatments.The presence of N-acetylcysteine in culture medium did not influence the rates of oocyte at the germinal vesicle stage.Conclusions:N-acetylcysteine at concentrations of 1.0 and 5.0 mM reduces ROS levels and staining for ethidium homodimer-1 in in vitro cultured follicles,respectively,while 25.0 mM N-acetylcysteine decreases follicular growth and the percentages of continuously growing follicles.
出处 《Asian pacific Journal of Reproduction》 2023年第1期42-48,共7页 亚太生殖杂志(英文版)
基金 supported by grants from the National Council for Scientific and Technological Development(CNPq,Brazil,grant number 308737/2018-0).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部