摘要
广义零样本图像分类中常使用生成模型重构视觉信息或语义信息用于再进一步学习.然而,基于变分自编码器的方法对重构样本利用不够充分,表示性能欠缺.因此,文中提出基于重构对比的广义零样本图像分类模型.首先,使用两个变分自编码器将视觉信息和语义信息编码为同维度的低维隐向量,再将隐向量分别解码到两种模态.然后,使用投影模块投影视觉信息与语义模态的隐向量重构的视觉模态信息.最后,对投影后的特征进行重构对比学习.在保持变分自编码器重构性能的基础上增强编码器重构的判别性能,提高预训练特征在广义零样本图像分类任务上的应用能力.在4个标准数据集上的实验证实文中模型的有效性.
In generalized zero-shot image classification,generative models are often exploited to reconstruct visual or semantic information for further learning.However,the representation performance of the methods based on variational autoencoders is poor due to the underutilization of the reconstructed samples.Therefore,a generalized zero-shot image classification model based on reconstruction and contrastive learning is proposed.Firstly,two variational self-encoders are utilized to encode visual information and semantic information into low dimensional latent vectors of the same dimension,and then the latent vectors are decoded into two modes respectively.Next,the project modules are utilized to project both the original visual information and the visual information reconstructed from semantic modal latent vectors.Then,reconstruction contrastive learning is performed to learn the features after projection.The reconstruction performance of the encoder is maintained,the discriminative performance of the encoder is enhanced,and the application ability of pre-training features on the generalized zero-shot task is improved by the proposed method.The effectiveness of the proposed model is verified on four benchmark datasets.
作者
许睿
邵帅
曹维佳
刘宝弟
陶大鹏
刘伟锋
XU Rui;SHAO Shuai;CAO Weijia;LIU Baodi;TAO Dapeng;LIU Weifeng(College of Control Science and Engineering,China University of Petroleum(East China),Qingdao 266580;Research Institute of Basic Theories,Zhejiang Laboratory,Hangzhou 311121;National Engineering Research Center of Remote Sensing Satellite Applications,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094;School of Information Science and Engineering,Yunnan University,Yunnan 650500)
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2022年第12期1078-1088,共11页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金项目(No.61671480)
中国石油天然气集团公司重大科技项目(No.ZD2019-183-008)
模式识别国家实验室开放项目(No.202000009)
中国石油大学项目(华东)研究生创新基金项目(No.YCX2021123)资助。
关键词
广义零样本图像分类
变分自编码器
对比学习
语义信息
视觉信息
Generalized Zero-Shot Image Classification
Variational Autoencoders
Contrastive Learning
Semantic Information
Visual Information