期刊文献+

单螺栓连接梁的非线性连接层建模与参数识别

Nonlinear connection layer modeling and parametric identification for single bolt connected beam
下载PDF
导出
摘要 针对线性的螺栓连接层等效模型无法表征进入微观滑移状态后结合部动力学行为的问题,用Voce本构关系对线性连接层等效模型做出了改进,使其能表征螺栓结合部的非线性动力学行为。以单螺栓连接梁为研究对象,试验探究了不同预紧扭矩对其固有频率的影响,测试了其在不同幅值谐波激励力下的频响函数。通过遗传算法对连接层等效模型的四个非线性参数进行了识别,分别包括初始屈服应力、切线模量和两个形状参数,识别了参数后模型频响函数计算值与试验值的误差在10%以内,表明改进后模型的准确性与可行性。改进后连接层等效模型可以用于装配结构非线性行为的预测。 Here,aiming at the problem of linear equivalent model of bolted connection layer not able to characterize dynamic behavior of the joint after entering micro slip state,the equivalent model of linear connection layer was improved by using Voce constitutive relation to be able to characterize nonlinear dynamic behavior of bolted joint.Taking a single bolt connected beam as the study object,effects of pre-tightening torque changes on beam natural frequencies were experimentally investigated,and its frequency response functions(FRFs)under harmonic excitation forces with different amplitudeswere tested.4 nonlinear parameters of initial yield stress,tangent modulus and two shape parametersin the equivalent model of connecting layer were identified with genetic algorithm.It was shown that the error between calculated value of the model’s FRF and its experimental value is within 10%after identifying parameters,the correctness and feasibility of the improved model is verified;the improved equivalent model of connecting layer can be used to predict nonlinear behavior of assembly structure.
作者 刘鹏韬 关天赐 王小鹏 LIU Pengtao;GUAN Tianci;WANG Xiaopeng(School of Mechanical Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
出处 《振动与冲击》 EI CSCD 北大核心 2023年第1期190-197,231,共9页 Journal of Vibration and Shock
基金 国家电网专项(520900180008)。
关键词 螺栓连接 参数识别 非线性 连接层模型 bolted connection parametricidentification nonlinear connection layer model
  • 相关文献

参考文献8

二级参考文献69

  • 1姜东,吴邵庆,史勤丰,费庆国.基于薄层单元的螺栓连接结构接触面不确定性参数识别[J].工程力学,2015,32(4):220-227. 被引量:23
  • 2李一堃,郝志明,章定国.基于六参数非均匀密度函数的伊万模型研究[J].力学学报,2015,47(3):513-520. 被引量:10
  • 3赵永武,吕彦明,蒋建忠.新的粗糙表面弹塑性接触模型[J].机械工程学报,2007,43(3):95-101. 被引量:107
  • 4Beards C F. Damping in structural joints [J]. Shock and Vibration Digest, 1985, 17(11): 17-20.
  • 5Ibrahim R, Pettit C. Uncertainties and dynamic problems of bolted joints and other fasteners [J]. Journal of Sound and Vibration, 2005, 279(3/4/5): 857-936.
  • 6Iwan W D. A distributed-element model for hysteresis and its steady-state dynamic response [J]. Journal of Applied Mechanics, ASME, 1966, 33(4): 893-900.
  • 7Iwan W D. On a class of models for the yielding behavior of continuous and composite systems [J]. Journal of Applied Mechanics, ASME, 1967, 34(3): 612-617.
  • 8Valanis K C. Fundamental consequences of a new intrinsic time measure: Plasticity as a limit of the endochronic theory [J]. Stossowanej, 1980, 32(2): 171 Archiwum Mechaniki 191.
  • 9Bouc R. Forced vibration of mechanical system with hysteresis [C]. Proceedings of the Fourth Conference onNonlinear Oscillations, Prague, Czechoslovakia, 1967.
  • 10Wen Y K. Method of random vibration of hysteretic systems [J]. Journal of the Engineering Mechanics Division, ASCE, 1976, 102(2): 249-263.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部