期刊文献+

采用带注意力机制3D U-Net网络的地质模型参数化技术 被引量:5

A 3D attention U-Net network and its application in geological model parameterization
下载PDF
导出
摘要 针对卷积神经网络增强的主成分分析技术(CNN-PCA)这种地质模型参数化技术在油藏复杂地质特征刻画精度和泛化能力方面存在的问题,不使用预训练好的C3D视频动作分析模型来提取三维模型风格特征,而使用新的损失函数并引入一种带注意力机制的3D U-Net网络来补全主成分分析方法(PCA)降维过程中丢失的地质模型细节信息,并以一个复合河道砂体油藏为例进行了应用效果分析。研究表明,与CNN-PCA技术相比,采用带注意力机制的3DU-Net网络能够更好地补全PCA降维过程中丢失的地质模型细节信息,在反映原始地质模型的流动特性方面具有更好的效果,并能改善油藏历史拟合的技术效果。 To solve the problems of convolutional neural network–principal component analysis(CNN-PCA) in fine description and generalization of complex reservoir geological features, a 3D attention U-Net network was proposed not using a trained C3D video motion analysis model to extract the style of a 3D model, and applied to complement the details of geologic model lost in the dimension reduction of PCA method in this study. The 3D attention U-Net network was applied to a complex river channel sandstone reservoir to test its effects. The results show that compared with CNN-PCA method, the 3D attention U-Net network could better complement the details of geological model lost in the PCA dimension reduction, better reflect the fluid flow features in the original geologic model, and improve history matching results.
作者 李小波 李欣 闫林 周腾骅 李顺明 王继强 李心浩 LI Xiaobo;LI Xin;YAN Lin;ZHOU Tenghua;LI Shunming;WANG Jiqiang;LI Xinhao(AI Research Center,Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China;Artificial Intelligence Technology R&D Center for Exploration and Development,CNPC,Beijing 100083,China;Department of Oilfield Development,Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China)
出处 《石油勘探与开发》 SCIE EI CAS CSCD 北大核心 2023年第1期167-173,共7页 Petroleum Exploration and Development
基金 国家油气重大专项(2016ZX05010-003) 中国石油天然气股份有限公司科技攻关课题(2019B1210,2021DJ1201)。
关键词 油藏历史拟合 地质模型参数化 深度学习 注意力机制 3D U-Net网络 reservoir history matching geological model parameterization deep learning attention mechanism 3D U-Net
  • 相关文献

参考文献3

二级参考文献30

  • 1程时清,王志伟,李相方,安小平.应用渗流反问题理论计算非均质油气藏多参数分布[J].石油学报,2006,27(3):87-90. 被引量:4
  • 2叶继根,吴向红,朱怡翔,刘合年,罗凯.大规模角点网格计算机辅助油藏模拟历史拟合方法研究[J].石油学报,2007,28(2):83-86. 被引量:22
  • 3Naevdal G,Mannseth T,Vefring E H.Near-well reservoir monitoring through Ensemble Kalman filter[R].SPE 75235,2002.
  • 4Wang C H,Li G M,Reynolds A C.Production optimization in closed-loop reservoir management[R].SPE 109805,2007.
  • 5Chen Y,Oliver D,Zhang D X.Efficient ensemble-based closedloop production optimization[R].SPE 112873,2008.
  • 6Rolf J L,Shafieirad A,Naevdal G.Closed loop reservoir management using the Ensemble Kalman filter and sequential quadratic programming[R].SPE 119101,2009.
  • 7Bianco A,Cominelli A,Dovera L.History matching and production forecast uncertainty by means of the Ensemble Kalman filter:A real field application[R].SPE 107161,2007.
  • 8Zhang Y F,Oliver S.History matching using a hierarchical stochastic model with the Ensemble Kalman filter:A field case study[R].SPE 118879,2009.
  • 9Arroyo-Negrete E,Deepak D,Datta-Gupta A,et al,Streamlineassisted Ensemble Kalman filter for rapid and continuous reservoir model updating[R].SPE 104255,2008.
  • 10Zafari M,Reynolds A C.Assessing the uncertainty in reservoir description and performance predictions with the Ensemble Kalman fiher[R].SPE 95750,2007.

共引文献47

同被引文献57

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部